下一步设备中等离子诊断的挑战(FIRE)

IF 0.3 1区 艺术学 0 MUSIC
K. Young
{"title":"下一步设备中等离子诊断的挑战(FIRE)","authors":"K. Young","doi":"10.1109/FUSION.2002.1027674","DOIUrl":null,"url":null,"abstract":"The physics program of any next step tokamak such as FIRE sets demands for plasma measurement which are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. The diagnostic instrumentation must be able to provide the fine spatial and temporal resolution required for the advanced tokamak plasma scenarios. It must also be able to overcome the effects of neutron- and gamma-induced electrical noise in ceramic components or detectors, and fluorescence and absorption in optical components. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many diagnostics will require components at or close to the first wall, e.g. ceramics and MI cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be mounted to operate, and survive, in fluxes which require special material selection. A better set of diagnostics of alpha-particles than that available for TFTR is essential; it must be qualified well before moving into D-T experiments. A start has been made to assessing the potential implementation of key diagnostics for the FIRE device. The present status is described.","PeriodicalId":44192,"journal":{"name":"NINETEENTH CENTURY MUSIC","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Challenges for plasma diagnostics in a next step device (FIRE)\",\"authors\":\"K. Young\",\"doi\":\"10.1109/FUSION.2002.1027674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The physics program of any next step tokamak such as FIRE sets demands for plasma measurement which are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. The diagnostic instrumentation must be able to provide the fine spatial and temporal resolution required for the advanced tokamak plasma scenarios. It must also be able to overcome the effects of neutron- and gamma-induced electrical noise in ceramic components or detectors, and fluorescence and absorption in optical components. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many diagnostics will require components at or close to the first wall, e.g. ceramics and MI cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be mounted to operate, and survive, in fluxes which require special material selection. A better set of diagnostics of alpha-particles than that available for TFTR is essential; it must be qualified well before moving into D-T experiments. A start has been made to assessing the potential implementation of key diagnostics for the FIRE device. The present status is described.\",\"PeriodicalId\":44192,\"journal\":{\"name\":\"NINETEENTH CENTURY MUSIC\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NINETEENTH CENTURY MUSIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUSION.2002.1027674\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MUSIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NINETEENTH CENTURY MUSIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.2002.1027674","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
引用次数: 6

摘要

任何下一步托卡马克(如FIRE)的物理程序都对等离子体测量提出了要求,这些要求至少与目前的托卡马克一样全面,并具有控制等离子体和理解α粒子效应所需的额外能力。诊断仪器必须能够提供高级托卡马克等离子体场景所需的精细空间和时间分辨率。它还必须能够克服陶瓷元件或探测器中中子和伽马诱发的电噪声的影响,以及光学元件中的荧光和吸收。在提供对等离子体的基本诊断通道的同时,将辐射流最小化是实际的工程问题。许多诊断将需要位于或靠近第一壁的组件,例如用于磁性诊断的陶瓷和MI电缆以及用于光学诊断的镜子;这些部件必须安装在需要特殊材料选择的助焊剂中才能运行和存活。必须有一套比现有的TFTR更好的α粒子诊断方法;在进行D-T实验之前,它必须经过很好的鉴定。目前已经开始评估FIRE设备关键诊断的潜在实施。介绍了现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges for plasma diagnostics in a next step device (FIRE)
The physics program of any next step tokamak such as FIRE sets demands for plasma measurement which are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. The diagnostic instrumentation must be able to provide the fine spatial and temporal resolution required for the advanced tokamak plasma scenarios. It must also be able to overcome the effects of neutron- and gamma-induced electrical noise in ceramic components or detectors, and fluorescence and absorption in optical components. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many diagnostics will require components at or close to the first wall, e.g. ceramics and MI cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be mounted to operate, and survive, in fluxes which require special material selection. A better set of diagnostics of alpha-particles than that available for TFTR is essential; it must be qualified well before moving into D-T experiments. A start has been made to assessing the potential implementation of key diagnostics for the FIRE device. The present status is described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
11
期刊介绍: 19th-Century Music covers all aspects of Western art music between the mid-eighteenth and mid-twentieth centuries. We welcome--in no particular order--considerations of composers and compositions, styles, performance, historical watersheds, cultural formations, critical methods, musical institutions, ideas, and topics not named on this list. Our aim is to publish contributions to ongoing conversations at the leading edge of musical and multidisciplinary scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信