积雪草苷对DNA电离辐射损伤的保护作用。

J. Joy, S. Alarifi, E. Alsuhaibani, C. Nair
{"title":"积雪草苷对DNA电离辐射损伤的保护作用。","authors":"J. Joy, S. Alarifi, E. Alsuhaibani, C. Nair","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2015013946","DOIUrl":null,"url":null,"abstract":"This study aims to investigate whether asiaticoside, a triterpene glycoside, can afford protection to DNA from alterations induced by gamma radiation under in vitro, ex vivo, and in vivo conditions. In vitro studies were done on plasmid pBR322 DNA, ex vivo studies were done on cellular DNA of human peripheral blood leukocytes, and in vivo investigations were conducted on cellular DNA of spleen and bone marrow cells of mice exposed to whole-body gamma radiation. The supercoiled form of the plasmid pBR322 DNA upon exposure to the radiation was converted into relaxed open circular form due to induction of strand breaks. Presence of asiaticoside along with the DNA during irradiation prevented the relaxation of the supercoiled form to the open circular form. When human peripheral blood leukocytes were exposed to gamma radiation, the cellular DNA suffered strand breaks as evidenced by the increased comet parameters in an alkaline comet assay. Asiaticoside, when present along with blood during irradiation ex vivo, prevented the strand breaks and the comet parameters were closer to that of the controls. Whole-body exposure of mice to gamma radiation resulted in a significant increase in comet parameters of DNA of bone marrow and spleen cells of mice as a result of radiation-induced strand breaks in DNA. Administration of asiaticoside prior to whole-body radiation exposure of the mice prevented this increase in radiation-induced increase in comet parameters, which could be the result of protection to DNA under in vivo conditions of radiation exposure. Thus, it can be concluded from the results that asiaticoside can offer protection to DNA from radiation-induced alterations under in vitro, ex vivo, and in vivo conditions.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"39 1","pages":"353-61"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Protection of DNA From Ionizing Radiation-Induced Lesions by Asiaticoside.\",\"authors\":\"J. Joy, S. Alarifi, E. Alsuhaibani, C. Nair\",\"doi\":\"10.1615/JENVIRONPATHOLTOXICOLONCOL.2015013946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to investigate whether asiaticoside, a triterpene glycoside, can afford protection to DNA from alterations induced by gamma radiation under in vitro, ex vivo, and in vivo conditions. In vitro studies were done on plasmid pBR322 DNA, ex vivo studies were done on cellular DNA of human peripheral blood leukocytes, and in vivo investigations were conducted on cellular DNA of spleen and bone marrow cells of mice exposed to whole-body gamma radiation. The supercoiled form of the plasmid pBR322 DNA upon exposure to the radiation was converted into relaxed open circular form due to induction of strand breaks. Presence of asiaticoside along with the DNA during irradiation prevented the relaxation of the supercoiled form to the open circular form. When human peripheral blood leukocytes were exposed to gamma radiation, the cellular DNA suffered strand breaks as evidenced by the increased comet parameters in an alkaline comet assay. Asiaticoside, when present along with blood during irradiation ex vivo, prevented the strand breaks and the comet parameters were closer to that of the controls. Whole-body exposure of mice to gamma radiation resulted in a significant increase in comet parameters of DNA of bone marrow and spleen cells of mice as a result of radiation-induced strand breaks in DNA. Administration of asiaticoside prior to whole-body radiation exposure of the mice prevented this increase in radiation-induced increase in comet parameters, which could be the result of protection to DNA under in vivo conditions of radiation exposure. Thus, it can be concluded from the results that asiaticoside can offer protection to DNA from radiation-induced alterations under in vitro, ex vivo, and in vivo conditions.\",\"PeriodicalId\":94332,\"journal\":{\"name\":\"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer\",\"volume\":\"39 1\",\"pages\":\"353-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2015013946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2015013946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在探讨三萜类苷积雪草苷在体外、离体和体内条件下对γ辐射诱导的DNA损伤是否具有保护作用。在体外对pBR322质粒DNA进行研究,在体外对人外周血白细胞细胞DNA进行研究,在体内对暴露于全身伽马辐射的小鼠脾脏和骨髓细胞的细胞DNA进行研究。暴露于辐射后,质粒pBR322 DNA的超卷曲形式由于诱导链断裂而转化为松弛的开放环状形式。在辐照过程中,积雪草苷与DNA一起存在,阻止了超卷曲形式向开放圆形形式的松弛。当人类外周血白细胞暴露于伽马辐射时,细胞DNA链断裂,这一点在碱性彗星试验中得到了彗星参数增加的证明。在体外辐照过程中,当积雪草苷与血液一起存在时,可以防止链断裂,彗星参数更接近对照组。小鼠全身暴露于伽马辐射导致小鼠骨髓和脾脏细胞DNA彗星参数的显著增加,这是由于辐射引起的DNA链断裂。在小鼠全身辐射暴露之前给药积雪草苷可以防止辐射引起的彗星参数增加,这可能是在体内辐射暴露条件下保护DNA的结果。由此可见,在体外、离体和体内条件下,积雪草苷均能保护DNA免受辐射引起的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protection of DNA From Ionizing Radiation-Induced Lesions by Asiaticoside.
This study aims to investigate whether asiaticoside, a triterpene glycoside, can afford protection to DNA from alterations induced by gamma radiation under in vitro, ex vivo, and in vivo conditions. In vitro studies were done on plasmid pBR322 DNA, ex vivo studies were done on cellular DNA of human peripheral blood leukocytes, and in vivo investigations were conducted on cellular DNA of spleen and bone marrow cells of mice exposed to whole-body gamma radiation. The supercoiled form of the plasmid pBR322 DNA upon exposure to the radiation was converted into relaxed open circular form due to induction of strand breaks. Presence of asiaticoside along with the DNA during irradiation prevented the relaxation of the supercoiled form to the open circular form. When human peripheral blood leukocytes were exposed to gamma radiation, the cellular DNA suffered strand breaks as evidenced by the increased comet parameters in an alkaline comet assay. Asiaticoside, when present along with blood during irradiation ex vivo, prevented the strand breaks and the comet parameters were closer to that of the controls. Whole-body exposure of mice to gamma radiation resulted in a significant increase in comet parameters of DNA of bone marrow and spleen cells of mice as a result of radiation-induced strand breaks in DNA. Administration of asiaticoside prior to whole-body radiation exposure of the mice prevented this increase in radiation-induced increase in comet parameters, which could be the result of protection to DNA under in vivo conditions of radiation exposure. Thus, it can be concluded from the results that asiaticoside can offer protection to DNA from radiation-induced alterations under in vitro, ex vivo, and in vivo conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信