微分几何中变换群的刚性

K. Melnick
{"title":"微分几何中变换群的刚性","authors":"K. Melnick","doi":"10.1090/NOTI2279","DOIUrl":null,"url":null,"abstract":"In this survey, symmetry provides a framework for classification of manifolds with differential-geometric structures. We highlight pseudo-Riemannian metrics, conformal structures, and projective structures. A range of techniques have been developed and successfully deployed in this subject, some of them based on algebra and dynamics and some based on analysis. We aim to illustrate this variety.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rigidity of Transformation Groups in Differential Geometry\",\"authors\":\"K. Melnick\",\"doi\":\"10.1090/NOTI2279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this survey, symmetry provides a framework for classification of manifolds with differential-geometric structures. We highlight pseudo-Riemannian metrics, conformal structures, and projective structures. A range of techniques have been developed and successfully deployed in this subject, some of them based on algebra and dynamics and some based on analysis. We aim to illustrate this variety.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/NOTI2279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/NOTI2279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本研究中,对称性为具有微分几何结构的流形的分类提供了一个框架。我们强调伪黎曼度量,共形结构和投影结构。一系列的技术已经被开发并成功地应用于这个主题,其中一些是基于代数和动力学的,一些是基于分析的。我们的目的是说明这种多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of Transformation Groups in Differential Geometry
In this survey, symmetry provides a framework for classification of manifolds with differential-geometric structures. We highlight pseudo-Riemannian metrics, conformal structures, and projective structures. A range of techniques have been developed and successfully deployed in this subject, some of them based on algebra and dynamics and some based on analysis. We aim to illustrate this variety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信