用于lte - r、lte和更低5g频段的铁路通信的鱼翅天线

IF 6.7 1区 计算机科学 Q1 Physics and Astronomy
A. Arya, S. Kim, Sungik Park, Donghoon Kim, Rehab S. Hassan, Kyeongjun Ko, Sanghoek Kim
{"title":"用于lte - r、lte和更低5g频段的铁路通信的鱼翅天线","authors":"A. Arya, S. Kim, Sungik Park, Donghoon Kim, Rehab S. Hassan, Kyeongjun Ko, Sanghoek Kim","doi":"10.2528/pier20040201","DOIUrl":null,"url":null,"abstract":"This paper presents a design study of a shark-fin antenna for future railway communications. Three specific bands are considered here as LTE-R (700 MHz), LTE (2100 MHz), and Lower 5G band (3500 MHz). A 3-D metallic structure using the 3D printing technique has been designed and fabricated for the consideration of the required bands. The volume size of the antenna element is 163 × 61.9 × 10 mm3. The multi-physical simulations in terms of the smooth air flow and lower drag coefficient are performed for analyzing the need of shark-fin radome cover. More than 70 MHz bandwidth was observed for the LTE-R band and also a wide band response from 1.4 GHz to 4.2 GHz was observed that cover the required bands well, i.e., the LTE, and Lower 5G band. The proposed shark-fin antenna results in the expected omnidirectional radiation pattern in the horizontal plane, with the radiation efficiency of 71.7%, 92.6%, and 96.4% in the railway environment for the LTE-R, LTE, and Lower 5G band frequency, respectively.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"11 1","pages":"83-94"},"PeriodicalIF":6.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"SHARK-FIN ANTENNA FOR RAILWAY COMMUNICATIONS IN LTE-R, LTE, AND LOWER 5G FREQUENCY BANDS\",\"authors\":\"A. Arya, S. Kim, Sungik Park, Donghoon Kim, Rehab S. Hassan, Kyeongjun Ko, Sanghoek Kim\",\"doi\":\"10.2528/pier20040201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a design study of a shark-fin antenna for future railway communications. Three specific bands are considered here as LTE-R (700 MHz), LTE (2100 MHz), and Lower 5G band (3500 MHz). A 3-D metallic structure using the 3D printing technique has been designed and fabricated for the consideration of the required bands. The volume size of the antenna element is 163 × 61.9 × 10 mm3. The multi-physical simulations in terms of the smooth air flow and lower drag coefficient are performed for analyzing the need of shark-fin radome cover. More than 70 MHz bandwidth was observed for the LTE-R band and also a wide band response from 1.4 GHz to 4.2 GHz was observed that cover the required bands well, i.e., the LTE, and Lower 5G band. The proposed shark-fin antenna results in the expected omnidirectional radiation pattern in the horizontal plane, with the radiation efficiency of 71.7%, 92.6%, and 96.4% in the railway environment for the LTE-R, LTE, and Lower 5G band frequency, respectively.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"11 1\",\"pages\":\"83-94\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/pier20040201\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/pier20040201","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 16

摘要

本文介绍了一种用于未来铁路通信的鲨鱼鳍天线的设计研究。这里考虑的三个特定频段是LTE- r (700 MHz)、LTE (2100 MHz)和Lower 5G频段(3500 MHz)。考虑到所需的波段,利用3D打印技术设计和制造了三维金属结构。天线单元的体积尺寸为163 × 61.9 × 10mm3。为了分析鲨鱼鳍天线罩的需求,进行了平滑气流和低阻力系数的多物理场模拟。观察到LTE- r频段的带宽超过70 MHz,并且观察到1.4 GHz到4.2 GHz的宽带响应,很好地覆盖了所需的频段,即LTE和Lower 5G频段。本文提出的鱼翅天线在水平面上实现了预期的全向辐射方向图,在铁路环境下,LTE- r、LTE和更低5G频段频率的辐射效率分别为71.7%、92.6%和96.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SHARK-FIN ANTENNA FOR RAILWAY COMMUNICATIONS IN LTE-R, LTE, AND LOWER 5G FREQUENCY BANDS
This paper presents a design study of a shark-fin antenna for future railway communications. Three specific bands are considered here as LTE-R (700 MHz), LTE (2100 MHz), and Lower 5G band (3500 MHz). A 3-D metallic structure using the 3D printing technique has been designed and fabricated for the consideration of the required bands. The volume size of the antenna element is 163 × 61.9 × 10 mm3. The multi-physical simulations in terms of the smooth air flow and lower drag coefficient are performed for analyzing the need of shark-fin radome cover. More than 70 MHz bandwidth was observed for the LTE-R band and also a wide band response from 1.4 GHz to 4.2 GHz was observed that cover the required bands well, i.e., the LTE, and Lower 5G band. The proposed shark-fin antenna results in the expected omnidirectional radiation pattern in the horizontal plane, with the radiation efficiency of 71.7%, 92.6%, and 96.4% in the railway environment for the LTE-R, LTE, and Lower 5G band frequency, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
3.00%
发文量
0
审稿时长
1.3 months
期刊介绍: Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信