J. F. G. D. Freitas, S. E. Johnson, M. Niranjan, A. Gee
{"title":"神经网络模型的序贯抽样-重要性重抽样全局优化","authors":"J. F. G. D. Freitas, S. E. Johnson, M. Niranjan, A. Gee","doi":"10.21437/ICSLP.1998-412","DOIUrl":null,"url":null,"abstract":"We propose a novel strategy for training neural networks using sequential Monte Carlo algorithms. This global optimisation strategy allows us to learn the probability distribution of the network weights in a sequential framework. It is well suited to applications involving on-line, nonlinear or non-stationary signal processing. We show how the new algorithms can outperform extended Kalman filter (EKF) training.","PeriodicalId":90685,"journal":{"name":"Proceedings : ICSLP. International Conference on Spoken Language Processing","volume":"58 1","pages":"410-416"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Global optimisation of neural network models via sequential sampling-importance resampling\",\"authors\":\"J. F. G. D. Freitas, S. E. Johnson, M. Niranjan, A. Gee\",\"doi\":\"10.21437/ICSLP.1998-412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel strategy for training neural networks using sequential Monte Carlo algorithms. This global optimisation strategy allows us to learn the probability distribution of the network weights in a sequential framework. It is well suited to applications involving on-line, nonlinear or non-stationary signal processing. We show how the new algorithms can outperform extended Kalman filter (EKF) training.\",\"PeriodicalId\":90685,\"journal\":{\"name\":\"Proceedings : ICSLP. International Conference on Spoken Language Processing\",\"volume\":\"58 1\",\"pages\":\"410-416\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings : ICSLP. International Conference on Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/ICSLP.1998-412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : ICSLP. International Conference on Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global optimisation of neural network models via sequential sampling-importance resampling
We propose a novel strategy for training neural networks using sequential Monte Carlo algorithms. This global optimisation strategy allows us to learn the probability distribution of the network weights in a sequential framework. It is well suited to applications involving on-line, nonlinear or non-stationary signal processing. We show how the new algorithms can outperform extended Kalman filter (EKF) training.