神经网络模型的序贯抽样-重要性重抽样全局优化

J. F. G. D. Freitas, S. E. Johnson, M. Niranjan, A. Gee
{"title":"神经网络模型的序贯抽样-重要性重抽样全局优化","authors":"J. F. G. D. Freitas, S. E. Johnson, M. Niranjan, A. Gee","doi":"10.21437/ICSLP.1998-412","DOIUrl":null,"url":null,"abstract":"We propose a novel strategy for training neural networks using sequential Monte Carlo algorithms. This global optimisation strategy allows us to learn the probability distribution of the network weights in a sequential framework. It is well suited to applications involving on-line, nonlinear or non-stationary signal processing. We show how the new algorithms can outperform extended Kalman filter (EKF) training.","PeriodicalId":90685,"journal":{"name":"Proceedings : ICSLP. International Conference on Spoken Language Processing","volume":"58 1","pages":"410-416"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Global optimisation of neural network models via sequential sampling-importance resampling\",\"authors\":\"J. F. G. D. Freitas, S. E. Johnson, M. Niranjan, A. Gee\",\"doi\":\"10.21437/ICSLP.1998-412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel strategy for training neural networks using sequential Monte Carlo algorithms. This global optimisation strategy allows us to learn the probability distribution of the network weights in a sequential framework. It is well suited to applications involving on-line, nonlinear or non-stationary signal processing. We show how the new algorithms can outperform extended Kalman filter (EKF) training.\",\"PeriodicalId\":90685,\"journal\":{\"name\":\"Proceedings : ICSLP. International Conference on Spoken Language Processing\",\"volume\":\"58 1\",\"pages\":\"410-416\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings : ICSLP. International Conference on Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/ICSLP.1998-412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : ICSLP. International Conference on Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了一种使用时序蒙特卡罗算法训练神经网络的新策略。这种全局优化策略使我们能够在序列框架中学习网络权重的概率分布。它非常适合于涉及在线、非线性或非平稳信号处理的应用。我们展示了新算法如何优于扩展卡尔曼滤波(EKF)训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global optimisation of neural network models via sequential sampling-importance resampling
We propose a novel strategy for training neural networks using sequential Monte Carlo algorithms. This global optimisation strategy allows us to learn the probability distribution of the network weights in a sequential framework. It is well suited to applications involving on-line, nonlinear or non-stationary signal processing. We show how the new algorithms can outperform extended Kalman filter (EKF) training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信