用于显著目标检测的非局部深度特征

Zhiming Luo, A. Mishra, Andrew Achkar, Justin A. Eichel, Shaozi Li, Pierre-Marc Jodoin
{"title":"用于显著目标检测的非局部深度特征","authors":"Zhiming Luo, A. Mishra, Andrew Achkar, Justin A. Eichel, Shaozi Li, Pierre-Marc Jodoin","doi":"10.1109/CVPR.2017.698","DOIUrl":null,"url":null,"abstract":"Saliency detection aims to highlight the most relevant objects in an image. Methods using conventional models struggle whenever salient objects are pictured on top of a cluttered background while deep neural nets suffer from excess complexity and slow evaluation speeds. In this paper, we propose a simplified convolutional neural network which combines local and global information through a multi-resolution 4×5 grid structure. Instead of enforcing spacial coherence with a CRF or superpixels as is usually the case, we implemented a loss function inspired by the Mumford-Shah functional which penalizes errors on the boundary. We trained our model on the MSRA-B dataset, and tested it on six different saliency benchmark datasets. Results show that our method is on par with the state-of-the-art while reducing computation time by a factor of 18 to 100 times, enabling near real-time, high performance saliency detection.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"16 1","pages":"6593-6601"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"430","resultStr":"{\"title\":\"Non-local Deep Features for Salient Object Detection\",\"authors\":\"Zhiming Luo, A. Mishra, Andrew Achkar, Justin A. Eichel, Shaozi Li, Pierre-Marc Jodoin\",\"doi\":\"10.1109/CVPR.2017.698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Saliency detection aims to highlight the most relevant objects in an image. Methods using conventional models struggle whenever salient objects are pictured on top of a cluttered background while deep neural nets suffer from excess complexity and slow evaluation speeds. In this paper, we propose a simplified convolutional neural network which combines local and global information through a multi-resolution 4×5 grid structure. Instead of enforcing spacial coherence with a CRF or superpixels as is usually the case, we implemented a loss function inspired by the Mumford-Shah functional which penalizes errors on the boundary. We trained our model on the MSRA-B dataset, and tested it on six different saliency benchmark datasets. Results show that our method is on par with the state-of-the-art while reducing computation time by a factor of 18 to 100 times, enabling near real-time, high performance saliency detection.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"16 1\",\"pages\":\"6593-6601\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"430\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 430

摘要

显著性检测旨在突出显示图像中最相关的物体。每当在杂乱的背景上描绘出突出的物体时,使用传统模型的方法就会遇到困难,而深度神经网络则受到过度复杂性和缓慢评估速度的困扰。在本文中,我们提出了一种简化的卷积神经网络,它通过多分辨率4×5网格结构结合了局部和全局信息。与通常使用CRF或超像素强制空间一致性不同,我们实现了一个受Mumford-Shah函数启发的损失函数,该函数用于惩罚边界上的错误。我们在MSRA-B数据集上训练我们的模型,并在六个不同的显著性基准数据集上进行测试。结果表明,我们的方法与最先进的方法相当,同时将计算时间减少了18到100倍,实现了近实时、高性能的显著性检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-local Deep Features for Salient Object Detection
Saliency detection aims to highlight the most relevant objects in an image. Methods using conventional models struggle whenever salient objects are pictured on top of a cluttered background while deep neural nets suffer from excess complexity and slow evaluation speeds. In this paper, we propose a simplified convolutional neural network which combines local and global information through a multi-resolution 4×5 grid structure. Instead of enforcing spacial coherence with a CRF or superpixels as is usually the case, we implemented a loss function inspired by the Mumford-Shah functional which penalizes errors on the boundary. We trained our model on the MSRA-B dataset, and tested it on six different saliency benchmark datasets. Results show that our method is on par with the state-of-the-art while reducing computation time by a factor of 18 to 100 times, enabling near real-time, high performance saliency detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信