{"title":"不变圆的定量破坏","authors":"Lin Wang","doi":"10.3934/dcds.2021164","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>For area-preserving twist maps on the annulus, we consider the problem on quantitative destruction of invariant circles with a given frequency <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\omega $\\end{document}</tex-math></inline-formula> of an integrable system by a trigonometric polynomial of degree <inline-formula><tex-math id=\"M2\">\\begin{document}$ N $\\end{document}</tex-math></inline-formula> perturbation <inline-formula><tex-math id=\"M3\">\\begin{document}$ R_N $\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\|R_N\\|_{C^r}<\\epsilon $\\end{document}</tex-math></inline-formula>. We obtain a relation among <inline-formula><tex-math id=\"M5\">\\begin{document}$ N $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M6\">\\begin{document}$ r $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\epsilon $\\end{document}</tex-math></inline-formula> and the arithmetic property of <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\omega $\\end{document}</tex-math></inline-formula>, for which the area-preserving map admit no invariant circles with <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\omega $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantitative destruction of invariant circles\",\"authors\":\"Lin Wang\",\"doi\":\"10.3934/dcds.2021164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>For area-preserving twist maps on the annulus, we consider the problem on quantitative destruction of invariant circles with a given frequency <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\omega $\\\\end{document}</tex-math></inline-formula> of an integrable system by a trigonometric polynomial of degree <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ N $\\\\end{document}</tex-math></inline-formula> perturbation <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ R_N $\\\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\|R_N\\\\|_{C^r}<\\\\epsilon $\\\\end{document}</tex-math></inline-formula>. We obtain a relation among <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ N $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ r $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\epsilon $\\\\end{document}</tex-math></inline-formula> and the arithmetic property of <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ \\\\omega $\\\\end{document}</tex-math></inline-formula>, for which the area-preserving map admit no invariant circles with <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ \\\\omega $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2021164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
对于环空上的保面积扭转映射,我们考虑了用阶数为\begin{document}$ N $\end{document}的扰动\begin{document}$ R_N $\end{document}与\begin{document}$ \|R_N\|_{C^r}的三角多项式对给定频率\begin{document}$ \omega $\end{document}的不变圆的定量破坏问题。得到了\begin{document}$ N $\end{document}、\begin{document}$ r $\end{document}、\begin{document}$ epsilon $\end{document}与\begin{document}$ \omega $\end{document}的算术性质之间的关系,使得保面积映射不允许有\begin{document}$ \omega $\end{document}的不变圆。
For area-preserving twist maps on the annulus, we consider the problem on quantitative destruction of invariant circles with a given frequency \begin{document}$ \omega $\end{document} of an integrable system by a trigonometric polynomial of degree \begin{document}$ N $\end{document} perturbation \begin{document}$ R_N $\end{document} with \begin{document}$ \|R_N\|_{C^r}<\epsilon $\end{document}. We obtain a relation among \begin{document}$ N $\end{document}, \begin{document}$ r $\end{document}, \begin{document}$ \epsilon $\end{document} and the arithmetic property of \begin{document}$ \omega $\end{document}, for which the area-preserving map admit no invariant circles with \begin{document}$ \omega $\end{document}.