用随机复积分随机表示Blasius公式

IF 0.3 Q4 MATHEMATICS, APPLIED
Kouji Yamamuro
{"title":"用随机复积分随机表示Blasius公式","authors":"Kouji Yamamuro","doi":"10.1142/S2661335219500047","DOIUrl":null,"url":null,"abstract":"Two-dimensional flow is considered in the complex plane. We discuss Blasius’ formula in a perfect fluid through stochastic complex integrals. This formula is also investigated in a viscous fluid. We mention the theorems corresponding to Green’s formulae last.","PeriodicalId":34218,"journal":{"name":"International Journal of Mathematics for Industry","volume":"77 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random representation of Blasius’ formula through stochastic complex integrals\",\"authors\":\"Kouji Yamamuro\",\"doi\":\"10.1142/S2661335219500047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional flow is considered in the complex plane. We discuss Blasius’ formula in a perfect fluid through stochastic complex integrals. This formula is also investigated in a viscous fluid. We mention the theorems corresponding to Green’s formulae last.\",\"PeriodicalId\":34218,\"journal\":{\"name\":\"International Journal of Mathematics for Industry\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics for Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2661335219500047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics for Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2661335219500047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在复平面上考虑二维流动。通过随机复积分讨论了理想流体中的Blasius公式。在粘性流体中也研究了这个公式。我们最后提到与格林公式相对应的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random representation of Blasius’ formula through stochastic complex integrals
Two-dimensional flow is considered in the complex plane. We discuss Blasius’ formula in a perfect fluid through stochastic complex integrals. This formula is also investigated in a viscous fluid. We mention the theorems corresponding to Green’s formulae last.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信