二维Dirichlet-Laplacian中紧密夹杂间的相互作用

V. Bonnaillie-Noël, M. Dambrine, C. Lacave
{"title":"二维Dirichlet-Laplacian中紧密夹杂间的相互作用","authors":"V. Bonnaillie-Noël, M. Dambrine, C. Lacave","doi":"10.1093/AMRX/ABV008","DOIUrl":null,"url":null,"abstract":"This paper concerns the asymptotic expansion of the solution of the Dirichlet-Laplace problem in a domain with small inclusions. This problem is well understood for the Neumann condition in dimension greater than two or Dirichlet condition in dimension greater than three. The case of two circular inclusions in a bidimensional domain was considered in [1]. In this paper, we generalize the previous result to any shape and relax the assumptions of regularity and support of the data. Our approach uses conformal mapping and suitable lifting of Dirichlet conditions. We also analyze configurations with several scales for the distance between the inclusions (when the number is larger than 2).","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"2 1","pages":"1-23"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Interactions Between Moderately Close Inclusions for the Two-Dimensional Dirichlet–Laplacian\",\"authors\":\"V. Bonnaillie-Noël, M. Dambrine, C. Lacave\",\"doi\":\"10.1093/AMRX/ABV008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the asymptotic expansion of the solution of the Dirichlet-Laplace problem in a domain with small inclusions. This problem is well understood for the Neumann condition in dimension greater than two or Dirichlet condition in dimension greater than three. The case of two circular inclusions in a bidimensional domain was considered in [1]. In this paper, we generalize the previous result to any shape and relax the assumptions of regularity and support of the data. Our approach uses conformal mapping and suitable lifting of Dirichlet conditions. We also analyze configurations with several scales for the distance between the inclusions (when the number is larger than 2).\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"2 1\",\"pages\":\"1-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABV008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABV008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文研究了小包含域上Dirichlet-Laplace问题解的渐近展开式。对于大于二维的诺伊曼条件或大于三维的狄利克雷条件,这个问题很好理解。在[1]中考虑了二维域中两个圆形内含物的情况。在本文中,我们将之前的结果推广到任何形状,并放宽了数据的规则性和支持性假设。我们的方法使用保角映射和狄利克雷条件的适当提升。我们还分析了包含物之间距离的几个尺度的配置(当数量大于2时)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactions Between Moderately Close Inclusions for the Two-Dimensional Dirichlet–Laplacian
This paper concerns the asymptotic expansion of the solution of the Dirichlet-Laplace problem in a domain with small inclusions. This problem is well understood for the Neumann condition in dimension greater than two or Dirichlet condition in dimension greater than three. The case of two circular inclusions in a bidimensional domain was considered in [1]. In this paper, we generalize the previous result to any shape and relax the assumptions of regularity and support of the data. Our approach uses conformal mapping and suitable lifting of Dirichlet conditions. We also analyze configurations with several scales for the distance between the inclusions (when the number is larger than 2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信