分布式实时事件分析

J. Stephen, D. Gmach, Rob Block, A. Madan, Alvin AuYoung
{"title":"分布式实时事件分析","authors":"J. Stephen, D. Gmach, Rob Block, A. Madan, Alvin AuYoung","doi":"10.1109/ICAC.2015.12","DOIUrl":null,"url":null,"abstract":"Security Information and Event Management (SIEM) systems perform complex event processing over a large number of event streams at high rate. As event streams increase in volume and event processing becomes more complex, traditional approaches such as scaling up to more powerful systems quickly become ineffective. This paper describes the design and implementation of DRES, a distributed, rule-based event evaluation system that can easily scale to process a large volume of non-trivial events. DRES intelligently forwards events across a cluster of nodes to evaluate complex correlation and aggregation rules. This approach enables DRES to work with any rules engine implementation. Our evaluation shows DRES scales linearly to more than 16 nodes. At this size it successfully processed more than half a million events per second.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"1 1","pages":"11-20"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Distributed Real-Time Event Analysis\",\"authors\":\"J. Stephen, D. Gmach, Rob Block, A. Madan, Alvin AuYoung\",\"doi\":\"10.1109/ICAC.2015.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security Information and Event Management (SIEM) systems perform complex event processing over a large number of event streams at high rate. As event streams increase in volume and event processing becomes more complex, traditional approaches such as scaling up to more powerful systems quickly become ineffective. This paper describes the design and implementation of DRES, a distributed, rule-based event evaluation system that can easily scale to process a large volume of non-trivial events. DRES intelligently forwards events across a cluster of nodes to evaluate complex correlation and aggregation rules. This approach enables DRES to work with any rules engine implementation. Our evaluation shows DRES scales linearly to more than 16 nodes. At this size it successfully processed more than half a million events per second.\",\"PeriodicalId\":6643,\"journal\":{\"name\":\"2015 IEEE International Conference on Autonomic Computing\",\"volume\":\"1 1\",\"pages\":\"11-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Autonomic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAC.2015.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

安全信息和事件管理(SIEM)系统在大量事件流上以高速率执行复杂事件处理。随着事件流数量的增加和事件处理变得更加复杂,传统的方法(如扩展到更强大的系统)很快变得无效。本文描述了DRES的设计和实现,DRES是一个分布式的、基于规则的事件评估系统,可以很容易地扩展到处理大量重要事件。DRES智能地跨节点集群转发事件,以评估复杂的关联和聚合规则。这种方法使DRES能够与任何规则引擎实现一起工作。我们的评估显示,DRES线性扩展到16个节点以上。在这种规模下,它每秒成功地处理了超过50万个事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Real-Time Event Analysis
Security Information and Event Management (SIEM) systems perform complex event processing over a large number of event streams at high rate. As event streams increase in volume and event processing becomes more complex, traditional approaches such as scaling up to more powerful systems quickly become ineffective. This paper describes the design and implementation of DRES, a distributed, rule-based event evaluation system that can easily scale to process a large volume of non-trivial events. DRES intelligently forwards events across a cluster of nodes to evaluate complex correlation and aggregation rules. This approach enables DRES to work with any rules engine implementation. Our evaluation shows DRES scales linearly to more than 16 nodes. At this size it successfully processed more than half a million events per second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信