不可分二维Schrödinger方程的代数方法:多项式和摩尔斯势的基态

V. Tichý, L. Skála, R. Hudec
{"title":"不可分二维Schrödinger方程的代数方法:多项式和摩尔斯势的基态","authors":"V. Tichý, L. Skála, R. Hudec","doi":"10.2478/s11534-014-0484-5","DOIUrl":null,"url":null,"abstract":"This paper presents a direct algebraic method of searching for analytic solutions of the two-dimensional time-independent Schrödinger equation that is impossible to separate into two one-dimensional ones. As examples, two-dimensional polynomial and Morse-like potentials are discussed. Analytic formulas for the ground state wave functions and the corresponding energies are presented. These results cannot be obtained by another known method.","PeriodicalId":50985,"journal":{"name":"Central European Journal of Physics","volume":"1 1","pages":"730-736"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algebraic approach to non-separable two-dimensional Schrödinger equation: Ground states for polynomial and Morse-like potentials\",\"authors\":\"V. Tichý, L. Skála, R. Hudec\",\"doi\":\"10.2478/s11534-014-0484-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a direct algebraic method of searching for analytic solutions of the two-dimensional time-independent Schrödinger equation that is impossible to separate into two one-dimensional ones. As examples, two-dimensional polynomial and Morse-like potentials are discussed. Analytic formulas for the ground state wave functions and the corresponding energies are presented. These results cannot be obtained by another known method.\",\"PeriodicalId\":50985,\"journal\":{\"name\":\"Central European Journal of Physics\",\"volume\":\"1 1\",\"pages\":\"730-736\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11534-014-0484-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11534-014-0484-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种直接的代数方法来求二维时无关Schrödinger方程的解析解,该方程不可能分离为两个一维方程。作为例子,讨论了二维多项式势和类莫尔斯势。给出了基态波函数和相应能量的解析公式。用另一种已知的方法无法得到这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic approach to non-separable two-dimensional Schrödinger equation: Ground states for polynomial and Morse-like potentials
This paper presents a direct algebraic method of searching for analytic solutions of the two-dimensional time-independent Schrödinger equation that is impossible to separate into two one-dimensional ones. As examples, two-dimensional polynomial and Morse-like potentials are discussed. Analytic formulas for the ground state wave functions and the corresponding energies are presented. These results cannot be obtained by another known method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Central European Journal of Physics
Central European Journal of Physics 物理-物理:综合
自引率
0.00%
发文量
0
审稿时长
3.3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信