流形上的抛物频率

T. Colding, W. Minicozzi
{"title":"流形上的抛物频率","authors":"T. Colding, W. Minicozzi","doi":"10.1093/IMRN/RNAB052","DOIUrl":null,"url":null,"abstract":"We prove monotonicity of a parabolic frequency on manifolds. This is a parabolic analog of Almgren's frequency function. Remarkably we get monotonicity on all manifolds and no curvature assumption is needed. When the manifold is Euclidean space and the drift operator is the Ornstein-Uhlenbeck operator this can been seen to imply Poon's frequency monotonicity for the ordinary heat equation. Monotonicity of frequency is a parabolic analog of the 19th century Hadamard three circles theorem about log convexity of holomorphic functions on $\\CC$. From the monotonicity, we get parabolic unique continuation and backward uniqueness.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Parabolic Frequency on Manifolds\",\"authors\":\"T. Colding, W. Minicozzi\",\"doi\":\"10.1093/IMRN/RNAB052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove monotonicity of a parabolic frequency on manifolds. This is a parabolic analog of Almgren's frequency function. Remarkably we get monotonicity on all manifolds and no curvature assumption is needed. When the manifold is Euclidean space and the drift operator is the Ornstein-Uhlenbeck operator this can been seen to imply Poon's frequency monotonicity for the ordinary heat equation. Monotonicity of frequency is a parabolic analog of the 19th century Hadamard three circles theorem about log convexity of holomorphic functions on $\\\\CC$. From the monotonicity, we get parabolic unique continuation and backward uniqueness.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAB052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

证明了流形上抛物频率的单调性。这是Almgren频率函数的抛物线模拟。值得注意的是,我们得到了所有流形的单调性,并且不需要曲率假设。当流形是欧几里得空间且漂移算子是Ornstein-Uhlenbeck算子时,可以看出这暗示了普通热方程的Poon频率单调性。频率单调性是19世纪关于全纯函数在$\CC$上的对数凸性的Hadamard三圆定理的一个抛物线类比。从单调性出发,得到抛物型的唯一延拓性和后向唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parabolic Frequency on Manifolds
We prove monotonicity of a parabolic frequency on manifolds. This is a parabolic analog of Almgren's frequency function. Remarkably we get monotonicity on all manifolds and no curvature assumption is needed. When the manifold is Euclidean space and the drift operator is the Ornstein-Uhlenbeck operator this can been seen to imply Poon's frequency monotonicity for the ordinary heat equation. Monotonicity of frequency is a parabolic analog of the 19th century Hadamard three circles theorem about log convexity of holomorphic functions on $\CC$. From the monotonicity, we get parabolic unique continuation and backward uniqueness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信