利用互信息对孟加拉数据进行情感挖掘

A. Paul, P. C. Shill
{"title":"利用互信息对孟加拉数据进行情感挖掘","authors":"A. Paul, P. C. Shill","doi":"10.1109/ICECTE.2016.7879569","DOIUrl":null,"url":null,"abstract":"Due to the explosion of social networking sites, blogs and review sites (for example, Amazon, Twitter, and Facebook, etc.) it provides an overwhelming amount of textual information. We need to organize, explore, analyze the information for making a better decision from the side of customers and companies. Thus, sentiment analysis is the best way in which it determines the author's feelings expressed in reviews as positive or negative opinions by analyzing an enormous number of documents. In this work, we used Mutual Information (MI) for the feature selection process and also used Multinomial Naive Bayes (MNB) for the classification of Bangla and English reviews. The experimental results demonstrate that the system can achieve satisfactory accuracy for Bangla dataset compare to English dataset where Bangla dataset is generated from Amazon's Watches English dataset.","PeriodicalId":6578,"journal":{"name":"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","volume":"12 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Sentiment mining from Bangla data using mutual information\",\"authors\":\"A. Paul, P. C. Shill\",\"doi\":\"10.1109/ICECTE.2016.7879569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the explosion of social networking sites, blogs and review sites (for example, Amazon, Twitter, and Facebook, etc.) it provides an overwhelming amount of textual information. We need to organize, explore, analyze the information for making a better decision from the side of customers and companies. Thus, sentiment analysis is the best way in which it determines the author's feelings expressed in reviews as positive or negative opinions by analyzing an enormous number of documents. In this work, we used Mutual Information (MI) for the feature selection process and also used Multinomial Naive Bayes (MNB) for the classification of Bangla and English reviews. The experimental results demonstrate that the system can achieve satisfactory accuracy for Bangla dataset compare to English dataset where Bangla dataset is generated from Amazon's Watches English dataset.\",\"PeriodicalId\":6578,\"journal\":{\"name\":\"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)\",\"volume\":\"12 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECTE.2016.7879569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTE.2016.7879569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

由于社交网站、博客和评论网站(例如Amazon、Twitter和Facebook等)的爆炸式增长,它提供了大量的文本信息。我们需要从客户和公司的角度组织、探索、分析这些信息,以便做出更好的决策。因此,情感分析是通过分析大量的文件来确定作者在评论中表达的情感是积极的还是消极的观点的最好方法。在这项工作中,我们使用互信息(MI)进行特征选择过程,并使用多项朴素贝叶斯(MNB)对孟加拉语和英语评论进行分类。实验结果表明,该系统对孟加拉语数据集的识别精度与基于亚马逊手表英语数据集生成的英语数据集相比,取得了令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment mining from Bangla data using mutual information
Due to the explosion of social networking sites, blogs and review sites (for example, Amazon, Twitter, and Facebook, etc.) it provides an overwhelming amount of textual information. We need to organize, explore, analyze the information for making a better decision from the side of customers and companies. Thus, sentiment analysis is the best way in which it determines the author's feelings expressed in reviews as positive or negative opinions by analyzing an enormous number of documents. In this work, we used Mutual Information (MI) for the feature selection process and also used Multinomial Naive Bayes (MNB) for the classification of Bangla and English reviews. The experimental results demonstrate that the system can achieve satisfactory accuracy for Bangla dataset compare to English dataset where Bangla dataset is generated from Amazon's Watches English dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信