{"title":"关于变革问题","authors":"Timothy M. Chan, Qizheng He","doi":"10.1137/1.9781611976014.7","DOIUrl":null,"url":null,"abstract":"Given a set of n non-negative integers representing a coin system, the change-making problem seeks the fewest number of coins that sum up to a given value t, where each type of coin can be used an unlimited number of times. This problem is a popular homework exercise in dynamic programming, where the textbook solution runs in O(nt)","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"27 1","pages":"38-42"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Change-Making Problem\",\"authors\":\"Timothy M. Chan, Qizheng He\",\"doi\":\"10.1137/1.9781611976014.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set of n non-negative integers representing a coin system, the change-making problem seeks the fewest number of coins that sum up to a given value t, where each type of coin can be used an unlimited number of times. This problem is a popular homework exercise in dynamic programming, where the textbook solution runs in O(nt)\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"27 1\",\"pages\":\"38-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611976014.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611976014.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Given a set of n non-negative integers representing a coin system, the change-making problem seeks the fewest number of coins that sum up to a given value t, where each type of coin can be used an unlimited number of times. This problem is a popular homework exercise in dynamic programming, where the textbook solution runs in O(nt)