Naima Benmakhlouf, S. Azzouz, L. Hassini, A. Cafsi
{"title":"模拟皮革在对流干燥过程中流体流变特性的二维模型","authors":"Naima Benmakhlouf, S. Azzouz, L. Hassini, A. Cafsi","doi":"10.5802/CRMECA.86","DOIUrl":null,"url":null,"abstract":"An experimental and numerical study of a two-dimensional spatio-temporal variation of the temperature, moisture content, and mechanical stress during the convective drying process of unsaturated and deformable products (leather) were conducted. The bovine leather sample response under convective drying is described by a mathematical model. The leather sample was modeled by an elastic medium, and the mass, heat, and momentum transfer principles are applied. The numerical results agreed well with the corresponding experimental data. The variation of the internal temperature and moisture content was simulated for different drying conditions. A reduction by 15 °C was noted in the optimum temperature for best product quality when the drying air relative humidity was 20%. The cost to achieve a better quality product was found to be minimized due to the decrease in the optimum temperature. The presented simulation results of the elastic material could be applied to the leather, which will reduce the needed time of exposure for predetermined final water content. The damage of the sample is more likely to occur at the beginning of the drying in the time interval of 300–400 s. According to these simulations, the sample’s face, which is exposed to the drying air, has the highest stress; therefore, the sample’s face is at a high risk of cracking. It is also observed that the risk of damage to the sample corresponding to the maximum level of the stress is higher for the highest drying temperature of 60 °C. The peak of the three thicknesses of leather can be achieved for normal stresses in the interval of 60,000 to 140,000 MPa at around 10,000 s.","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"46 1","pages":"305-322"},"PeriodicalIF":1.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D model simulating the hydro-rheological behavior of leather during convective drying\",\"authors\":\"Naima Benmakhlouf, S. Azzouz, L. Hassini, A. Cafsi\",\"doi\":\"10.5802/CRMECA.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experimental and numerical study of a two-dimensional spatio-temporal variation of the temperature, moisture content, and mechanical stress during the convective drying process of unsaturated and deformable products (leather) were conducted. The bovine leather sample response under convective drying is described by a mathematical model. The leather sample was modeled by an elastic medium, and the mass, heat, and momentum transfer principles are applied. The numerical results agreed well with the corresponding experimental data. The variation of the internal temperature and moisture content was simulated for different drying conditions. A reduction by 15 °C was noted in the optimum temperature for best product quality when the drying air relative humidity was 20%. The cost to achieve a better quality product was found to be minimized due to the decrease in the optimum temperature. The presented simulation results of the elastic material could be applied to the leather, which will reduce the needed time of exposure for predetermined final water content. The damage of the sample is more likely to occur at the beginning of the drying in the time interval of 300–400 s. According to these simulations, the sample’s face, which is exposed to the drying air, has the highest stress; therefore, the sample’s face is at a high risk of cracking. It is also observed that the risk of damage to the sample corresponding to the maximum level of the stress is higher for the highest drying temperature of 60 °C. The peak of the three thicknesses of leather can be achieved for normal stresses in the interval of 60,000 to 140,000 MPa at around 10,000 s.\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"46 1\",\"pages\":\"305-322\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMECA.86\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5802/CRMECA.86","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
2D model simulating the hydro-rheological behavior of leather during convective drying
An experimental and numerical study of a two-dimensional spatio-temporal variation of the temperature, moisture content, and mechanical stress during the convective drying process of unsaturated and deformable products (leather) were conducted. The bovine leather sample response under convective drying is described by a mathematical model. The leather sample was modeled by an elastic medium, and the mass, heat, and momentum transfer principles are applied. The numerical results agreed well with the corresponding experimental data. The variation of the internal temperature and moisture content was simulated for different drying conditions. A reduction by 15 °C was noted in the optimum temperature for best product quality when the drying air relative humidity was 20%. The cost to achieve a better quality product was found to be minimized due to the decrease in the optimum temperature. The presented simulation results of the elastic material could be applied to the leather, which will reduce the needed time of exposure for predetermined final water content. The damage of the sample is more likely to occur at the beginning of the drying in the time interval of 300–400 s. According to these simulations, the sample’s face, which is exposed to the drying air, has the highest stress; therefore, the sample’s face is at a high risk of cracking. It is also observed that the risk of damage to the sample corresponding to the maximum level of the stress is higher for the highest drying temperature of 60 °C. The peak of the three thicknesses of leather can be achieved for normal stresses in the interval of 60,000 to 140,000 MPa at around 10,000 s.
期刊介绍:
The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.