具有下里奇界和几乎最大体积的Kähler流形的度量刚度

V. Datar, H. Seshadri, Jian Song
{"title":"具有下里奇界和几乎最大体积的Kähler流形的度量刚度","authors":"V. Datar, H. Seshadri, Jian Song","doi":"10.1090/PROC/15473","DOIUrl":null,"url":null,"abstract":"In this short note we prove that a Kahler manifold with lower Ricci curvature bound and almost maximal volume is Gromov-Hausdorff close to the projective space with the Fubini-Study metric. This is done by combining the recent results of Kewei Zhang and Yuchen Liu on holomorphic rigidity of such Kahler manifolds with the structure theorem of Tian-Wang for almost Einstein manifolds. This can be regarded as the complex analog of the result on Colding on the shape of Riemannian manifolds with almost maximal volume","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metric rigidity of Kähler manifolds with lower Ricci bounds and almost maximal volume\",\"authors\":\"V. Datar, H. Seshadri, Jian Song\",\"doi\":\"10.1090/PROC/15473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this short note we prove that a Kahler manifold with lower Ricci curvature bound and almost maximal volume is Gromov-Hausdorff close to the projective space with the Fubini-Study metric. This is done by combining the recent results of Kewei Zhang and Yuchen Liu on holomorphic rigidity of such Kahler manifolds with the structure theorem of Tian-Wang for almost Einstein manifolds. This can be regarded as the complex analog of the result on Colding on the shape of Riemannian manifolds with almost maximal volume\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PROC/15473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇简短的笔记中,我们证明了具有低Ricci曲率界和几乎最大体积的Kahler流形是具有Fubini-Study度量的接近投影空间的Gromov-Hausdorff流形。这是通过将张克伟和刘宇晨最近关于这类Kahler流形全纯刚性的结果与几乎爱因斯坦流形的Tian-Wang结构定理相结合来完成的。这可以看作是对体积几乎最大的黎曼流形的形状的复杂模拟
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metric rigidity of Kähler manifolds with lower Ricci bounds and almost maximal volume
In this short note we prove that a Kahler manifold with lower Ricci curvature bound and almost maximal volume is Gromov-Hausdorff close to the projective space with the Fubini-Study metric. This is done by combining the recent results of Kewei Zhang and Yuchen Liu on holomorphic rigidity of such Kahler manifolds with the structure theorem of Tian-Wang for almost Einstein manifolds. This can be regarded as the complex analog of the result on Colding on the shape of Riemannian manifolds with almost maximal volume
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信