< m,m,m >三重积性质三元组的快速搜索算法及5×5矩阵乘法的应用

IF 0.1 Q4 MATHEMATICS
S. Hart, Ivo Hedtke, M. Müller-Hannemann, Sandeep Murthy
{"title":"< m,m,m >三重积性质三元组的快速搜索算法及5×5矩阵乘法的应用","authors":"S. Hart, Ivo Hedtke, M. Müller-Hannemann, Sandeep Murthy","doi":"10.1515/gcc-2015-0001","DOIUrl":null,"url":null,"abstract":"Abstract We present a new fast search algorithm for 〈m,m,m〉 Triple Product Property (TPP) triples as defined by Cohn and Umans in 2003. The new algorithm achieves a speed-up factor of 40 up to 194 in comparison to the best known search algorithm. With a parallelized version of the new algorithm we are able to search for TPP triples in groups up to order 55. As an application we identify lists “C1” and “C2” of groups that, if they contain a 〈5,5,5〉 TPP triple, could realize 5×5 matrix multiplication with under 100, respectively under 125, scalar multiplications, i.e., the best known upper bound by Makarov (1987), respectively the trivial upper bound. With our new algorithm we show that no group in this list can realize 5×5 matrix multiplication better than Makarov's algorithm. We also show a direction towards a modified group-theoretic search, not covered by the C1 list.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"2 8 1","pages":"31 - 46"},"PeriodicalIF":0.1000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A fast search algorithm for 〈m,m,m〉 Triple Product Property triples and an application for 5×5 matrix multiplication\",\"authors\":\"S. Hart, Ivo Hedtke, M. Müller-Hannemann, Sandeep Murthy\",\"doi\":\"10.1515/gcc-2015-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a new fast search algorithm for 〈m,m,m〉 Triple Product Property (TPP) triples as defined by Cohn and Umans in 2003. The new algorithm achieves a speed-up factor of 40 up to 194 in comparison to the best known search algorithm. With a parallelized version of the new algorithm we are able to search for TPP triples in groups up to order 55. As an application we identify lists “C1” and “C2” of groups that, if they contain a 〈5,5,5〉 TPP triple, could realize 5×5 matrix multiplication with under 100, respectively under 125, scalar multiplications, i.e., the best known upper bound by Makarov (1987), respectively the trivial upper bound. With our new algorithm we show that no group in this list can realize 5×5 matrix multiplication better than Makarov's algorithm. We also show a direction towards a modified group-theoretic search, not covered by the C1 list.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"2 8 1\",\"pages\":\"31 - 46\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2015-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2015-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

提出了Cohn和humans在2003年定义的< m,m,m >三重积性质(TPP)三元组的一种新的快速搜索算法。与最著名的搜索算法相比,新算法实现了40到194的加速因子。使用新算法的并行化版本,我们能够搜索多达55阶的TPP三元组。作为一个应用,我们确定了组的列表“C1”和“C2”,如果它们包含< 5,5,5 > TPP三元组,则可以实现5×5矩阵乘法,分别小于100,分别小于125,标量乘法,即Makarov(1987)最著名的上界,分别是平凡上界。通过我们的新算法,我们证明了该列表中没有任何组可以比Makarov算法更好地实现5×5矩阵乘法。我们还展示了一个改进的群论搜索的方向,没有被C1列表覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast search algorithm for 〈m,m,m〉 Triple Product Property triples and an application for 5×5 matrix multiplication
Abstract We present a new fast search algorithm for 〈m,m,m〉 Triple Product Property (TPP) triples as defined by Cohn and Umans in 2003. The new algorithm achieves a speed-up factor of 40 up to 194 in comparison to the best known search algorithm. With a parallelized version of the new algorithm we are able to search for TPP triples in groups up to order 55. As an application we identify lists “C1” and “C2” of groups that, if they contain a 〈5,5,5〉 TPP triple, could realize 5×5 matrix multiplication with under 100, respectively under 125, scalar multiplications, i.e., the best known upper bound by Makarov (1987), respectively the trivial upper bound. With our new algorithm we show that no group in this list can realize 5×5 matrix multiplication better than Makarov's algorithm. We also show a direction towards a modified group-theoretic search, not covered by the C1 list.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信