Besicovitch定理及Birkhoff遍历定理的推广

P. Hagelstein, D. Herden, A. Stokolos
{"title":"Besicovitch定理及Birkhoff遍历定理的推广","authors":"P. Hagelstein, D. Herden, A. Stokolos","doi":"10.1090/BPROC/73","DOIUrl":null,"url":null,"abstract":"A remarkable theorem of Besicovitch is that an integrable function $f$ on $\\mathbb{R}^2$ is strongly differentiable if and only if its associated strong maximal function $M_S f$ is finite a.e. We provide an analogue of Besicovitch's result in the context of ergodic theory that provides a generalization of Birkhoff's Ergodic Theorem. In particular, we show that if $f$ is a measurable function on a standard probability space and $T$ is an invertible measure-preserving transformation on that space, then the ergodic averages of $f$ with respect to $T$ converge a.e. if and only if the associated ergodic maximal function $T^*f$ is finite a.e.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A theorem of Besicovitch and a generalization of the Birkhoff Ergodic Theorem\",\"authors\":\"P. Hagelstein, D. Herden, A. Stokolos\",\"doi\":\"10.1090/BPROC/73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A remarkable theorem of Besicovitch is that an integrable function $f$ on $\\\\mathbb{R}^2$ is strongly differentiable if and only if its associated strong maximal function $M_S f$ is finite a.e. We provide an analogue of Besicovitch's result in the context of ergodic theory that provides a generalization of Birkhoff's Ergodic Theorem. In particular, we show that if $f$ is a measurable function on a standard probability space and $T$ is an invertible measure-preserving transformation on that space, then the ergodic averages of $f$ with respect to $T$ converge a.e. if and only if the associated ergodic maximal function $T^*f$ is finite a.e.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/BPROC/73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/BPROC/73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Besicovitch的一个重要定理是:$\mathbb{R}^2$上的可积函数$f$是强可微的当且仅当其关联的强极大函数$M_S f$是有限的。我们在遍历理论的背景下给出了Besicovitch结果的一个类比,提供了Birkhoff遍历定理的推广。特别地,我们证明了如果$f$是标准概率空间上的可测函数,而$T$是该空间上可逆的保测度变换,那么$f$关于$T$的遍历平均当且仅当相关的遍历极大函数$T^*f$是有限的a.e收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A theorem of Besicovitch and a generalization of the Birkhoff Ergodic Theorem
A remarkable theorem of Besicovitch is that an integrable function $f$ on $\mathbb{R}^2$ is strongly differentiable if and only if its associated strong maximal function $M_S f$ is finite a.e. We provide an analogue of Besicovitch's result in the context of ergodic theory that provides a generalization of Birkhoff's Ergodic Theorem. In particular, we show that if $f$ is a measurable function on a standard probability space and $T$ is an invertible measure-preserving transformation on that space, then the ergodic averages of $f$ with respect to $T$ converge a.e. if and only if the associated ergodic maximal function $T^*f$ is finite a.e.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信