改进的一般自归一化和的cram型中等偏差定理及其在相关随机变量和温化均值上的应用

Lan Gao, Q. Shao, Jiasheng Shi
{"title":"改进的一般自归一化和的cram<s:1>型中等偏差定理及其在相关随机变量和温化均值上的应用","authors":"Lan Gao, Q. Shao, Jiasheng Shi","doi":"10.1214/21-aos2122","DOIUrl":null,"url":null,"abstract":"Let {(Xi, Yi)}i=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér type moderate deviation theorem for the general self-normalized sum ∑n i=1Xi/( ∑n i=1 Y 2 i ) 1/2, which unifies and extends the classical Cramér (1938) theorem and the selfnormalized Cramér type moderate deviation theorems by Jing, Shao and Wang (2003) as well as the further refined version by Wang (2011). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramér type moderate deviation theorems for onedependent random variables, geometrically β-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramér type moderate deviation theorems for self-normalized winsorized mean.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean\",\"authors\":\"Lan Gao, Q. Shao, Jiasheng Shi\",\"doi\":\"10.1214/21-aos2122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let {(Xi, Yi)}i=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér type moderate deviation theorem for the general self-normalized sum ∑n i=1Xi/( ∑n i=1 Y 2 i ) 1/2, which unifies and extends the classical Cramér (1938) theorem and the selfnormalized Cramér type moderate deviation theorems by Jing, Shao and Wang (2003) as well as the further refined version by Wang (2011). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramér type moderate deviation theorems for onedependent random variables, geometrically β-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramér type moderate deviation theorems for self-normalized winsorized mean.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aos2122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aos2122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对广义自归一化和∑n i=1Xi/(∑n i=1 Y 2 i) 1/2建立了一个改进的cram宽泛中偏差定理,统一和推广了经典的cram宽泛(1938)定理和Jing、Shao和Wang(2003)的自归一化cram宽泛中偏差定理以及Wang(2011)的进一步改进版本。通过对弱相关随机变量和自归一化均值的成功应用证明了我们的结果的优势。具体地说,通过将我们的新框架应用于一般自归一化和,我们显著地改进了单依随机变量、几何β混合随机变量和几何矩收缩下因果过程的cram型中等偏差定理。作为一个附加的应用,我们也得到了自归一化均值的cram型中等偏差定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refined Cramér-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean
Let {(Xi, Yi)}i=1 be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramér type moderate deviation theorem for the general self-normalized sum ∑n i=1Xi/( ∑n i=1 Y 2 i ) 1/2, which unifies and extends the classical Cramér (1938) theorem and the selfnormalized Cramér type moderate deviation theorems by Jing, Shao and Wang (2003) as well as the further refined version by Wang (2011). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cramér type moderate deviation theorems for onedependent random variables, geometrically β-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cramér type moderate deviation theorems for self-normalized winsorized mean.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信