多目标旋转探测

Q2 Engineering
Tamir Bendory, Ti-Yen Lan, Nicholas F Marshall, Iris Rukshin, Amit Singer
{"title":"多目标旋转探测","authors":"Tamir Bendory, Ti-Yen Lan, Nicholas F Marshall, Iris Rukshin, Amit Singer","doi":"10.3934/ipi.2022046","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the multi-target detection problem of estimating a two-dimensional target image from a large noisy measurement image that contains many randomly rotated and translated copies of the target image. Motivated by single-particle cryo-electron microscopy, we focus on the low signal-to-noise regime, where it is difficult to estimate the locations and orientations of the target images in the measurement. Our approach uses autocorrelation analysis to estimate rotationally and translationally invariant features of the target image. We demonstrate that, regardless of the level of noise, our technique can be used to recover the target image when the measurement is sufficiently large.</p>","PeriodicalId":35587,"journal":{"name":"Transactions Hong Kong Institution of Engineers","volume":"19 1","pages":"362-380"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340853/pdf/","citationCount":"0","resultStr":"{\"title\":\"MULTI-TARGET DETECTION WITH ROTATIONS.\",\"authors\":\"Tamir Bendory, Ti-Yen Lan, Nicholas F Marshall, Iris Rukshin, Amit Singer\",\"doi\":\"10.3934/ipi.2022046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the multi-target detection problem of estimating a two-dimensional target image from a large noisy measurement image that contains many randomly rotated and translated copies of the target image. Motivated by single-particle cryo-electron microscopy, we focus on the low signal-to-noise regime, where it is difficult to estimate the locations and orientations of the target images in the measurement. Our approach uses autocorrelation analysis to estimate rotationally and translationally invariant features of the target image. We demonstrate that, regardless of the level of noise, our technique can be used to recover the target image when the measurement is sufficiently large.</p>\",\"PeriodicalId\":35587,\"journal\":{\"name\":\"Transactions Hong Kong Institution of Engineers\",\"volume\":\"19 1\",\"pages\":\"362-380\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340853/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions Hong Kong Institution of Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2022046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions Hong Kong Institution of Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ipi.2022046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是多目标检测问题,即从包含许多随机旋转和平移的目标图像副本的大型噪声测量图像中估计二维目标图像。受单颗粒低温电子显微镜技术的启发,我们将重点放在低信噪比机制上,因为在低信噪比机制下,很难估计测量图像中目标图像的位置和方向。我们的方法使用自相关分析来估计目标图像的旋转和平移不变特征。我们证明,无论噪声水平如何,当测量值足够大时,我们的技术都能用于恢复目标图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MULTI-TARGET DETECTION WITH ROTATIONS.

We consider the multi-target detection problem of estimating a two-dimensional target image from a large noisy measurement image that contains many randomly rotated and translated copies of the target image. Motivated by single-particle cryo-electron microscopy, we focus on the low signal-to-noise regime, where it is difficult to estimate the locations and orientations of the target images in the measurement. Our approach uses autocorrelation analysis to estimate rotationally and translationally invariant features of the target image. We demonstrate that, regardless of the level of noise, our technique can be used to recover the target image when the measurement is sufficiently large.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions Hong Kong Institution of Engineers
Transactions Hong Kong Institution of Engineers Engineering-Engineering (all)
CiteScore
2.70
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信