WR 140 x射线辐射的碰撞恒星风模型

S. Zhekov
{"title":"WR 140 x射线辐射的碰撞恒星风模型","authors":"S. Zhekov","doi":"10.1093/mnras/staa3591","DOIUrl":null,"url":null,"abstract":"We modelled the Chandra and RXTE X-ray spectra of the massive binary WR 140 in the framework of the standard colliding stellar wind (CSW) picture. Models with partial electron heating at the shock fronts are a better representation of the X-ray data than those with complete temperature equalization. Emission measure of the X-ray plasma in the CSW region exhibits a considerable decrease at orbital phases near periastron. This is equivalent to variable effective mass-loss rates over the binary orbit. At orbital phases near periastron, a considerable X-ray absorption in excess to that from the stellar winds in WR 140 is present. The standard CSW model provides line profiles that in general do not match well the observed line profiles of the strong line features in the X-ray spectrum of WR 140. The variable effective mass-loss rate could be understood qualitatively in CSW picture of clumpy stellar winds where clumps are efficiently dissolved in the CSW region near apastron but not at periastron. However, future development of CSW models with non-spherically-symmetric stellar winds might be needed to get a better correspondence between theory and observations.","PeriodicalId":8437,"journal":{"name":"arXiv: High Energy Astrophysical Phenomena","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Colliding stellar wind modelling of the X-ray emission from WR 140\",\"authors\":\"S. Zhekov\",\"doi\":\"10.1093/mnras/staa3591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We modelled the Chandra and RXTE X-ray spectra of the massive binary WR 140 in the framework of the standard colliding stellar wind (CSW) picture. Models with partial electron heating at the shock fronts are a better representation of the X-ray data than those with complete temperature equalization. Emission measure of the X-ray plasma in the CSW region exhibits a considerable decrease at orbital phases near periastron. This is equivalent to variable effective mass-loss rates over the binary orbit. At orbital phases near periastron, a considerable X-ray absorption in excess to that from the stellar winds in WR 140 is present. The standard CSW model provides line profiles that in general do not match well the observed line profiles of the strong line features in the X-ray spectrum of WR 140. The variable effective mass-loss rate could be understood qualitatively in CSW picture of clumpy stellar winds where clumps are efficiently dissolved in the CSW region near apastron but not at periastron. However, future development of CSW models with non-spherically-symmetric stellar winds might be needed to get a better correspondence between theory and observations.\",\"PeriodicalId\":8437,\"journal\":{\"name\":\"arXiv: High Energy Astrophysical Phenomena\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Astrophysical Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/staa3591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们在标准碰撞恒星风(CSW)图像的框架内模拟了大质量双星WR 140的钱德拉和RXTE x射线光谱。激波前部分电子加热的模型比完全温度均衡的模型更能代表x射线数据。在CSW区域的x射线等离子体的发射测量显示,在近星附近的轨道相位有相当大的减少。这相当于在双星轨道上的可变有效质量损失率。在近日点附近的轨道阶段,有相当多的x射线吸收,超过了wr140恒星风的吸收。标准的CSW模型提供的线廓线与WR 140 x射线光谱中观测到的强线特征的线廓线一般不太匹配。团块恒星风的CSW图像可以定性地理解有效质量损失率的变化,其中团块在靠近小行星的CSW区域有效溶解,而不是在小行星周围。然而,未来可能需要发展具有非球对称恒星风的CSW模型,以便在理论和观测之间获得更好的对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Colliding stellar wind modelling of the X-ray emission from WR 140
We modelled the Chandra and RXTE X-ray spectra of the massive binary WR 140 in the framework of the standard colliding stellar wind (CSW) picture. Models with partial electron heating at the shock fronts are a better representation of the X-ray data than those with complete temperature equalization. Emission measure of the X-ray plasma in the CSW region exhibits a considerable decrease at orbital phases near periastron. This is equivalent to variable effective mass-loss rates over the binary orbit. At orbital phases near periastron, a considerable X-ray absorption in excess to that from the stellar winds in WR 140 is present. The standard CSW model provides line profiles that in general do not match well the observed line profiles of the strong line features in the X-ray spectrum of WR 140. The variable effective mass-loss rate could be understood qualitatively in CSW picture of clumpy stellar winds where clumps are efficiently dissolved in the CSW region near apastron but not at periastron. However, future development of CSW models with non-spherically-symmetric stellar winds might be needed to get a better correspondence between theory and observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信