基于不同方案的高性能和低功耗计算的可扩展fpga阵列

K. Sano, Luzhou Wang, Yoshiaki Hatsuda, S. Yamamoto
{"title":"基于不同方案的高性能和低功耗计算的可扩展fpga阵列","authors":"K. Sano, Luzhou Wang, Yoshiaki Hatsuda, S. Yamamoto","doi":"10.1109/HPRCTA.2008.4745679","DOIUrl":null,"url":null,"abstract":"For numerical computations requiring a relatively high ratio of data access to operation, the scalability of memory bandwidth is key to performance improvement. In this paper, we propose a scalable FPGA-array to achieve custom computing machines for high-performance and power-efficient scientific simulations based on difference schemes. With the FPGA-array, we construct a systolic computational-memory array (SCMA) by homogeneously partitioning the SCMA among multiple tightly-coupled FPGAs. A large SCMA implemented using a lot of FPGAs achieves high-performance computation with scalable memory-bandwidth and scalable arithmetic-performance according to the array size. For feasibility demonstration and quantitative evaluation, we design and implement the SCMA of 192 processing elements over two ALTERA StratixII FPGAs. The implemented SCMA running at 106 MHz achieves the sustained performances of 32.8 to 36.5 GFlops in single precision for three benchmark computations while the peak performance is 40.7 GFlops. In comparison with a 3.4GHz Pentium4 processor, the SCMAs consume 70% to 87% power and require only 3% to 7% energy consumption for the same computations. Based on the requirement model for inter-FPGA bandwidth, we illustrate that SCMAs are completely scalable for the currently available high-end to low-end FPGAs, while the SCMA implemented with the two FPGAs demonstrates the doubled performance of that by the single-FPGA SCMA.","PeriodicalId":59014,"journal":{"name":"高性能计算技术","volume":"4 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Scalable FPGA-array for high-performance and power-efficient computation based on difference schemes\",\"authors\":\"K. Sano, Luzhou Wang, Yoshiaki Hatsuda, S. Yamamoto\",\"doi\":\"10.1109/HPRCTA.2008.4745679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For numerical computations requiring a relatively high ratio of data access to operation, the scalability of memory bandwidth is key to performance improvement. In this paper, we propose a scalable FPGA-array to achieve custom computing machines for high-performance and power-efficient scientific simulations based on difference schemes. With the FPGA-array, we construct a systolic computational-memory array (SCMA) by homogeneously partitioning the SCMA among multiple tightly-coupled FPGAs. A large SCMA implemented using a lot of FPGAs achieves high-performance computation with scalable memory-bandwidth and scalable arithmetic-performance according to the array size. For feasibility demonstration and quantitative evaluation, we design and implement the SCMA of 192 processing elements over two ALTERA StratixII FPGAs. The implemented SCMA running at 106 MHz achieves the sustained performances of 32.8 to 36.5 GFlops in single precision for three benchmark computations while the peak performance is 40.7 GFlops. In comparison with a 3.4GHz Pentium4 processor, the SCMAs consume 70% to 87% power and require only 3% to 7% energy consumption for the same computations. Based on the requirement model for inter-FPGA bandwidth, we illustrate that SCMAs are completely scalable for the currently available high-end to low-end FPGAs, while the SCMA implemented with the two FPGAs demonstrates the doubled performance of that by the single-FPGA SCMA.\",\"PeriodicalId\":59014,\"journal\":{\"name\":\"高性能计算技术\",\"volume\":\"4 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"高性能计算技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/HPRCTA.2008.4745679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"高性能计算技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/HPRCTA.2008.4745679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

对于需要较高数据访问与运算比率的数值计算,内存带宽的可扩展性是提高性能的关键。在本文中,我们提出了一个可扩展的fpga阵列,以实现基于不同方案的高性能和节能科学模拟的定制计算机器。利用fpga阵列,我们通过在多个紧密耦合的fpga中均匀划分计算存储阵列(SCMA)来构建收缩计算存储阵列(SCMA)。使用大量fpga实现的大型SCMA可以根据阵列大小实现可扩展的内存带宽和可扩展的算术性能,从而实现高性能计算。为了进行可行性论证和定量评估,我们在两个ALTERA StratixII fpga上设计并实现了192个处理元件的SCMA。所实现的SCMA在106 MHz下运行,在三次基准计算中,单精度的持续性能为32.8 ~ 36.5 GFlops,峰值性能为40.7 GFlops。与3.4GHz Pentium4处理器相比,scma的功耗为70%至87%,而同样的计算只需要3%至7%的能耗。基于fpga间带宽的需求模型,我们说明了SCMA对于目前可用的高端到低端fpga是完全可扩展的,而用两个fpga实现的SCMA显示了单fpga SCMA的两倍性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable FPGA-array for high-performance and power-efficient computation based on difference schemes
For numerical computations requiring a relatively high ratio of data access to operation, the scalability of memory bandwidth is key to performance improvement. In this paper, we propose a scalable FPGA-array to achieve custom computing machines for high-performance and power-efficient scientific simulations based on difference schemes. With the FPGA-array, we construct a systolic computational-memory array (SCMA) by homogeneously partitioning the SCMA among multiple tightly-coupled FPGAs. A large SCMA implemented using a lot of FPGAs achieves high-performance computation with scalable memory-bandwidth and scalable arithmetic-performance according to the array size. For feasibility demonstration and quantitative evaluation, we design and implement the SCMA of 192 processing elements over two ALTERA StratixII FPGAs. The implemented SCMA running at 106 MHz achieves the sustained performances of 32.8 to 36.5 GFlops in single precision for three benchmark computations while the peak performance is 40.7 GFlops. In comparison with a 3.4GHz Pentium4 processor, the SCMAs consume 70% to 87% power and require only 3% to 7% energy consumption for the same computations. Based on the requirement model for inter-FPGA bandwidth, we illustrate that SCMAs are completely scalable for the currently available high-end to low-end FPGAs, while the SCMA implemented with the two FPGAs demonstrates the doubled performance of that by the single-FPGA SCMA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1121
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信