幂零轨道上的不可约局部系统

IF 0.1 Q4 MATHEMATICS
E. Sommers
{"title":"幂零轨道上的不可约局部系统","authors":"E. Sommers","doi":"10.21915/BIMAS.2018302","DOIUrl":null,"url":null,"abstract":"Let $G$ be a simple, simply-connected algebraic group over the complex numbers with Lie algebra $\\mathfrak g$. The main result of this article is a proof that each irreducible representation of the fundamental group of the orbit $\\mathcal O$ through a nilpotent element $e \\in \\mathfrak g$ lifts to a representation of a Jacobson-Morozov parabolic subgroup of $G$ associated to $e$. This result was shown in some cases by Barbasch and Vogan in their study of unipotent representations for complex groups and, in general, in an unpublished part of the author's doctoral thesis. In the last section of the article, we state two applications of this result, whose details will appear elsewhere: to answering a question of Lusztig regarding special pieces in the exceptional groups (joint work with Fu, Juteau, and Levy); and to computing the $G$-module structure of the sections of an irreducible local system on $\\mathcal O$. A key aspect of the latter application is some new cohomological statements that generalize those in earlier work of the author.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"21 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Irreducible Local Systems on Nilpotent Orbits\",\"authors\":\"E. Sommers\",\"doi\":\"10.21915/BIMAS.2018302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a simple, simply-connected algebraic group over the complex numbers with Lie algebra $\\\\mathfrak g$. The main result of this article is a proof that each irreducible representation of the fundamental group of the orbit $\\\\mathcal O$ through a nilpotent element $e \\\\in \\\\mathfrak g$ lifts to a representation of a Jacobson-Morozov parabolic subgroup of $G$ associated to $e$. This result was shown in some cases by Barbasch and Vogan in their study of unipotent representations for complex groups and, in general, in an unpublished part of the author's doctoral thesis. In the last section of the article, we state two applications of this result, whose details will appear elsewhere: to answering a question of Lusztig regarding special pieces in the exceptional groups (joint work with Fu, Juteau, and Levy); and to computing the $G$-module structure of the sections of an irreducible local system on $\\\\mathcal O$. A key aspect of the latter application is some new cohomological statements that generalize those in earlier work of the author.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/BIMAS.2018302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/BIMAS.2018302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设$G$是复数上具有李代数$\mathfrak G$的单连通代数群。本文的主要结果是证明了轨道0的基群的每一个不可约表示,都可以通过0的幂零元表示为g的Jacobson-Morozov抛物子群的表示。Barbasch和Vogan在他们对复杂群体的单能表示的研究中,在某些情况下证明了这一结果,一般来说,在作者的博士论文中未发表的部分。在本文的最后一部分,我们陈述了这一结果的两个应用,其细节将在其他地方出现:回答关于特殊群中的特殊片段的Lusztig问题(与Fu, Juteau和Levy共同工作);计算不可约局部系统在$\mathcal O$上各部分的$G$-模块结构。后一种应用的一个关键方面是一些新的上同调陈述,这些陈述概括了作者早期工作中的那些。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irreducible Local Systems on Nilpotent Orbits
Let $G$ be a simple, simply-connected algebraic group over the complex numbers with Lie algebra $\mathfrak g$. The main result of this article is a proof that each irreducible representation of the fundamental group of the orbit $\mathcal O$ through a nilpotent element $e \in \mathfrak g$ lifts to a representation of a Jacobson-Morozov parabolic subgroup of $G$ associated to $e$. This result was shown in some cases by Barbasch and Vogan in their study of unipotent representations for complex groups and, in general, in an unpublished part of the author's doctoral thesis. In the last section of the article, we state two applications of this result, whose details will appear elsewhere: to answering a question of Lusztig regarding special pieces in the exceptional groups (joint work with Fu, Juteau, and Levy); and to computing the $G$-module structure of the sections of an irreducible local system on $\mathcal O$. A key aspect of the latter application is some new cohomological statements that generalize those in earlier work of the author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信