利用距离几何评价浮油分类的极化变异性

A. Marinoni, M. M. Espeseth, P. Gamba, C. Brekke, T. Eltoft
{"title":"利用距离几何评价浮油分类的极化变异性","authors":"A. Marinoni, M. M. Espeseth, P. Gamba, C. Brekke, T. Eltoft","doi":"10.1109/IGARSS.2019.8899247","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new approach for investigation of polarimetric Synthetic Aperture Radar (PolSAR) images for oil slick analysis. Our method aims at enhancing discrimination of oil types by exploring the polarimetric features that can be produced by processing PolSAR scenes without dimensionality reduction. Taking advantage of a mixture description of the interactions among classes within the dataset and a characterization of their intra- and inter-class variability, our algorithm is able to quantify the areal coverage of different elements. These estimates can be used to hence improve classification. Experimental results on a PolSAR dataset acquired by unmanned aerial vehicle (UAV) on oil slicks in open water show the capacity of our method.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"18 1","pages":"5217-5220"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Polarimetric Variability by Distance Geometry for Enhanced Classification of Oil Slicks Using SAR\",\"authors\":\"A. Marinoni, M. M. Espeseth, P. Gamba, C. Brekke, T. Eltoft\",\"doi\":\"10.1109/IGARSS.2019.8899247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new approach for investigation of polarimetric Synthetic Aperture Radar (PolSAR) images for oil slick analysis. Our method aims at enhancing discrimination of oil types by exploring the polarimetric features that can be produced by processing PolSAR scenes without dimensionality reduction. Taking advantage of a mixture description of the interactions among classes within the dataset and a characterization of their intra- and inter-class variability, our algorithm is able to quantify the areal coverage of different elements. These estimates can be used to hence improve classification. Experimental results on a PolSAR dataset acquired by unmanned aerial vehicle (UAV) on oil slicks in open water show the capacity of our method.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"18 1\",\"pages\":\"5217-5220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8899247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于浮油分析的偏振合成孔径雷达(PolSAR)图像研究的新方法。我们的方法旨在通过探索PolSAR场景在不降维的情况下处理产生的极化特征来增强油类型的区分。利用数据集中类之间相互作用的混合描述以及类内和类间可变性的特征,我们的算法能够量化不同元素的面积覆盖。这些估计可以用来改进分类。在开放水域的浮油上,无人机采集的PolSAR数据集的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Polarimetric Variability by Distance Geometry for Enhanced Classification of Oil Slicks Using SAR
In this paper, we introduce a new approach for investigation of polarimetric Synthetic Aperture Radar (PolSAR) images for oil slick analysis. Our method aims at enhancing discrimination of oil types by exploring the polarimetric features that can be produced by processing PolSAR scenes without dimensionality reduction. Taking advantage of a mixture description of the interactions among classes within the dataset and a characterization of their intra- and inter-class variability, our algorithm is able to quantify the areal coverage of different elements. These estimates can be used to hence improve classification. Experimental results on a PolSAR dataset acquired by unmanned aerial vehicle (UAV) on oil slicks in open water show the capacity of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信