使用隐马尔可夫模型进行局部放电模式分类

L. Satish, B. Gururaj
{"title":"使用隐马尔可夫模型进行局部放电模式分类","authors":"L. Satish, B. Gururaj","doi":"10.1109/14.212242","DOIUrl":null,"url":null,"abstract":"An attempt was made to use hidden Markov models (HMM) to classify partial discharge (PD) image patterns. After an introduction to HMM, the methodology and algorithms for evolving them are explained. The selection of the model and training parameters and the results obtained are discussed. The utility of the approach is evaluated by applying it to five types of actual PD image patterns. The performance of the HMM approach is shown to exceed that of neural networks. >","PeriodicalId":13105,"journal":{"name":"IEEE Transactions on Electrical Insulation","volume":"3 1","pages":"172-182"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"Use of hidden Markov models for partial discharge pattern classification\",\"authors\":\"L. Satish, B. Gururaj\",\"doi\":\"10.1109/14.212242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An attempt was made to use hidden Markov models (HMM) to classify partial discharge (PD) image patterns. After an introduction to HMM, the methodology and algorithms for evolving them are explained. The selection of the model and training parameters and the results obtained are discussed. The utility of the approach is evaluated by applying it to five types of actual PD image patterns. The performance of the HMM approach is shown to exceed that of neural networks. >\",\"PeriodicalId\":13105,\"journal\":{\"name\":\"IEEE Transactions on Electrical Insulation\",\"volume\":\"3 1\",\"pages\":\"172-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electrical Insulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/14.212242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electrical Insulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/14.212242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

摘要

尝试使用隐马尔可夫模型(HMM)对局部放电(PD)图像模式进行分类。在介绍HMM之后,解释了发展HMM的方法和算法。讨论了模型和训练参数的选择以及得到的结果。通过将该方法应用于五种类型的实际PD图像模式来评估该方法的效用。HMM方法的性能优于神经网络。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of hidden Markov models for partial discharge pattern classification
An attempt was made to use hidden Markov models (HMM) to classify partial discharge (PD) image patterns. After an introduction to HMM, the methodology and algorithms for evolving them are explained. The selection of the model and training parameters and the results obtained are discussed. The utility of the approach is evaluated by applying it to five types of actual PD image patterns. The performance of the HMM approach is shown to exceed that of neural networks. >
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信