可选保真度的度量特性

V. T. Khoi, Ho Minh Toan
{"title":"可选保真度的度量特性","authors":"V. T. Khoi, Ho Minh Toan","doi":"10.26421/qic22.9-10-5","DOIUrl":null,"url":null,"abstract":"On the space of mixed quantum states, several alternative fidelities have been proposed besides the standard Uhlmann-Jozsa fidelity. It has been known that several properties of the Uhlmann-Jozsa fidelity still hold true for these alternative fidelities. The aim of this paper is to give positive answers to some questions about the metric properties of functionals of alternative quantum fidelities raised by Y. C. Liang {\\it et al.} in \\cite{LYM}. Our method is to use the non-negativity of the Gram determinant of three vectors constructed from the quantum states to prove the triangle inequality for the modified Bures angle.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"1 1","pages":"790-799"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metric properties of alternative fidelities\",\"authors\":\"V. T. Khoi, Ho Minh Toan\",\"doi\":\"10.26421/qic22.9-10-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the space of mixed quantum states, several alternative fidelities have been proposed besides the standard Uhlmann-Jozsa fidelity. It has been known that several properties of the Uhlmann-Jozsa fidelity still hold true for these alternative fidelities. The aim of this paper is to give positive answers to some questions about the metric properties of functionals of alternative quantum fidelities raised by Y. C. Liang {\\\\it et al.} in \\\\cite{LYM}. Our method is to use the non-negativity of the Gram determinant of three vectors constructed from the quantum states to prove the triangle inequality for the modified Bures angle.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"1 1\",\"pages\":\"790-799\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/qic22.9-10-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic22.9-10-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在混合量子态空间上,除了标准的Uhlmann-Jozsa保真度外,还提出了几种替代保真度。众所周知,Uhlmann-Jozsa保真度的几个特性仍然适用于这些替代保真度。本文的目的是对y.c. Liang{\it等人}在\cite{LYM}中提出的关于可选量子保真度泛函的度量性质的一些问题给出肯定的答案。我们的方法是利用由量子态构造的三个向量的Gram行列式的非负性来证明修正Bures角的三角形不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metric properties of alternative fidelities
On the space of mixed quantum states, several alternative fidelities have been proposed besides the standard Uhlmann-Jozsa fidelity. It has been known that several properties of the Uhlmann-Jozsa fidelity still hold true for these alternative fidelities. The aim of this paper is to give positive answers to some questions about the metric properties of functionals of alternative quantum fidelities raised by Y. C. Liang {\it et al.} in \cite{LYM}. Our method is to use the non-negativity of the Gram determinant of three vectors constructed from the quantum states to prove the triangle inequality for the modified Bures angle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信