{"title":"基于边缘计算资源的工作流位置感知调度新方法","authors":"Yin Li, Yuyin Ma, Ziyang Zeng","doi":"10.4018/ijwsr.2020070104","DOIUrl":null,"url":null,"abstract":"Edge computing is pushing the frontier of computing applications, data, and services away from centralized nodes to the logical extremes of a network. A major technological challenge for workflow scheduling in the edge computing environment is cost reduction with service-level-agreement (SLA) constraints in terms of performance and quality-of-service requirements because real-world workflow applications are constantly subject to negative impacts (e.g., network congestions, unexpected long message delays, shrinking coverage, range of edge servers due to battery depletion. To address the above concern, we propose a novel approach to location-aware and proximity-constrained multi-workflow scheduling with edge computing resources). The proposed approach is capable of minimizing monetary costs with user-required workflow completion deadlines. It employs an evolutionary algorithm (i.e., the discrete firefly algorithm) for the generation of near-optimal scheduling decisions. For the validation purpose, the authors show that our proposed approach outperforms traditional peers in terms multiple metrics based on a real-world dataset of edge resource locations and multiple well-known scientific workflow templates.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"17 1","pages":"56-68"},"PeriodicalIF":0.8000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Novel Approach to Location-Aware Scheduling of Workflows Over Edge Computing Resources\",\"authors\":\"Yin Li, Yuyin Ma, Ziyang Zeng\",\"doi\":\"10.4018/ijwsr.2020070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing is pushing the frontier of computing applications, data, and services away from centralized nodes to the logical extremes of a network. A major technological challenge for workflow scheduling in the edge computing environment is cost reduction with service-level-agreement (SLA) constraints in terms of performance and quality-of-service requirements because real-world workflow applications are constantly subject to negative impacts (e.g., network congestions, unexpected long message delays, shrinking coverage, range of edge servers due to battery depletion. To address the above concern, we propose a novel approach to location-aware and proximity-constrained multi-workflow scheduling with edge computing resources). The proposed approach is capable of minimizing monetary costs with user-required workflow completion deadlines. It employs an evolutionary algorithm (i.e., the discrete firefly algorithm) for the generation of near-optimal scheduling decisions. For the validation purpose, the authors show that our proposed approach outperforms traditional peers in terms multiple metrics based on a real-world dataset of edge resource locations and multiple well-known scientific workflow templates.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"17 1\",\"pages\":\"56-68\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijwsr.2020070104\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.2020070104","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Novel Approach to Location-Aware Scheduling of Workflows Over Edge Computing Resources
Edge computing is pushing the frontier of computing applications, data, and services away from centralized nodes to the logical extremes of a network. A major technological challenge for workflow scheduling in the edge computing environment is cost reduction with service-level-agreement (SLA) constraints in terms of performance and quality-of-service requirements because real-world workflow applications are constantly subject to negative impacts (e.g., network congestions, unexpected long message delays, shrinking coverage, range of edge servers due to battery depletion. To address the above concern, we propose a novel approach to location-aware and proximity-constrained multi-workflow scheduling with edge computing resources). The proposed approach is capable of minimizing monetary costs with user-required workflow completion deadlines. It employs an evolutionary algorithm (i.e., the discrete firefly algorithm) for the generation of near-optimal scheduling decisions. For the validation purpose, the authors show that our proposed approach outperforms traditional peers in terms multiple metrics based on a real-world dataset of edge resource locations and multiple well-known scientific workflow templates.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.