{"title":"超过750 AGN和多个GBH的黑洞质量吸积率和效率因子","authors":"R. Daly","doi":"10.1093/mnras/staa3213","DOIUrl":null,"url":null,"abstract":"Mass accretion rates in dimensionless and physical units, and efficiency factors describing the total radiant luminosity of the disk and the beam power of the outflow are studied here. Four samples of sources including 576 LINERs, 100 classical double (FRII) radio sources, 80 relatively local AGN, and 103 measurements of four stellar mass X-ray binary systems, referred to as Galactic Black Holes (GBH), are included in the study. All of the sources have highly collimated outflows leading to compact radio emission or powerful extended (FRII) radio emission. The properties of each of the full samples are explored, as are those of the four individual GBH, and sub-types of the FRII and local AGN samples. Source types and sub-types that have high, medium, and low values of accretion rates and efficiency factors are identified and studied. A new efficiency factor that describes the relative impact of black hole spin and mass accretion rate on the beam power is defined and studied, and is found to provide a new and interesting diagnostic. Mass accretion rates for 13 sources and efficiency factors for 6 sources are compared with values obtained independently, and indicate that similar values are obtained with independent methods. The mass accretion rates and efficiency factors obtained here substantially increase the number of values available, and improve our understanding of their relationship to source types. The redshift dependence of quantities is presented and the impact on the results is discussed.","PeriodicalId":8452,"journal":{"name":"arXiv: Astrophysics of Galaxies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Black hole mass accretion rates and efficiency factors for over 750 AGN and multiple GBH\",\"authors\":\"R. Daly\",\"doi\":\"10.1093/mnras/staa3213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mass accretion rates in dimensionless and physical units, and efficiency factors describing the total radiant luminosity of the disk and the beam power of the outflow are studied here. Four samples of sources including 576 LINERs, 100 classical double (FRII) radio sources, 80 relatively local AGN, and 103 measurements of four stellar mass X-ray binary systems, referred to as Galactic Black Holes (GBH), are included in the study. All of the sources have highly collimated outflows leading to compact radio emission or powerful extended (FRII) radio emission. The properties of each of the full samples are explored, as are those of the four individual GBH, and sub-types of the FRII and local AGN samples. Source types and sub-types that have high, medium, and low values of accretion rates and efficiency factors are identified and studied. A new efficiency factor that describes the relative impact of black hole spin and mass accretion rate on the beam power is defined and studied, and is found to provide a new and interesting diagnostic. Mass accretion rates for 13 sources and efficiency factors for 6 sources are compared with values obtained independently, and indicate that similar values are obtained with independent methods. The mass accretion rates and efficiency factors obtained here substantially increase the number of values available, and improve our understanding of their relationship to source types. The redshift dependence of quantities is presented and the impact on the results is discussed.\",\"PeriodicalId\":8452,\"journal\":{\"name\":\"arXiv: Astrophysics of Galaxies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Astrophysics of Galaxies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/staa3213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Black hole mass accretion rates and efficiency factors for over 750 AGN and multiple GBH
Mass accretion rates in dimensionless and physical units, and efficiency factors describing the total radiant luminosity of the disk and the beam power of the outflow are studied here. Four samples of sources including 576 LINERs, 100 classical double (FRII) radio sources, 80 relatively local AGN, and 103 measurements of four stellar mass X-ray binary systems, referred to as Galactic Black Holes (GBH), are included in the study. All of the sources have highly collimated outflows leading to compact radio emission or powerful extended (FRII) radio emission. The properties of each of the full samples are explored, as are those of the four individual GBH, and sub-types of the FRII and local AGN samples. Source types and sub-types that have high, medium, and low values of accretion rates and efficiency factors are identified and studied. A new efficiency factor that describes the relative impact of black hole spin and mass accretion rate on the beam power is defined and studied, and is found to provide a new and interesting diagnostic. Mass accretion rates for 13 sources and efficiency factors for 6 sources are compared with values obtained independently, and indicate that similar values are obtained with independent methods. The mass accretion rates and efficiency factors obtained here substantially increase the number of values available, and improve our understanding of their relationship to source types. The redshift dependence of quantities is presented and the impact on the results is discussed.