{"title":"基于耦合条件马尔可夫网络的室内移动语义标注","authors":"Huan Li, Hua Lu, M. A. Cheema, L. Shou, Gang Chen","doi":"10.1109/ICDE48307.2020.00128","DOIUrl":null,"url":null,"abstract":"Indoor mobility semantics analytics can greatly benefit many pertinent applications. Existing semantic annotation methods mainly focus on outdoor space and require extra knowledge such as POI category or human activity regularity. However, these conditions are difficult to meet in indoor venues with relatively small extents but complex topology. This work studies the annotation of indoor mobility semantics that describe an object’s mobility event (what ) at a semantic indoor region (where ) during a time period (when ). A coupled conditional Markov network (C2MN) is proposed with a set of feature functions carefully designed by incorporating indoor topology and mobility behaviors. C2MN is able to capture probabilistic dependencies among positioning records, semantic regions, and mobility events jointly. Nevertheless, the correlation of regions and events hinders the parameters learning. Therefore, we devise an alternate learning algorithm to enable the parameter learning over correlated variables. The extensive experiments demonstrate that our C2MN-based semantic annotation is efficient and effective on both real and synthetic indoor mobility data.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"19 1","pages":"1441-1452"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Indoor Mobility Semantics Annotation Using Coupled Conditional Markov Networks\",\"authors\":\"Huan Li, Hua Lu, M. A. Cheema, L. Shou, Gang Chen\",\"doi\":\"10.1109/ICDE48307.2020.00128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor mobility semantics analytics can greatly benefit many pertinent applications. Existing semantic annotation methods mainly focus on outdoor space and require extra knowledge such as POI category or human activity regularity. However, these conditions are difficult to meet in indoor venues with relatively small extents but complex topology. This work studies the annotation of indoor mobility semantics that describe an object’s mobility event (what ) at a semantic indoor region (where ) during a time period (when ). A coupled conditional Markov network (C2MN) is proposed with a set of feature functions carefully designed by incorporating indoor topology and mobility behaviors. C2MN is able to capture probabilistic dependencies among positioning records, semantic regions, and mobility events jointly. Nevertheless, the correlation of regions and events hinders the parameters learning. Therefore, we devise an alternate learning algorithm to enable the parameter learning over correlated variables. The extensive experiments demonstrate that our C2MN-based semantic annotation is efficient and effective on both real and synthetic indoor mobility data.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"19 1\",\"pages\":\"1441-1452\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Indoor Mobility Semantics Annotation Using Coupled Conditional Markov Networks
Indoor mobility semantics analytics can greatly benefit many pertinent applications. Existing semantic annotation methods mainly focus on outdoor space and require extra knowledge such as POI category or human activity regularity. However, these conditions are difficult to meet in indoor venues with relatively small extents but complex topology. This work studies the annotation of indoor mobility semantics that describe an object’s mobility event (what ) at a semantic indoor region (where ) during a time period (when ). A coupled conditional Markov network (C2MN) is proposed with a set of feature functions carefully designed by incorporating indoor topology and mobility behaviors. C2MN is able to capture probabilistic dependencies among positioning records, semantic regions, and mobility events jointly. Nevertheless, the correlation of regions and events hinders the parameters learning. Therefore, we devise an alternate learning algorithm to enable the parameter learning over correlated variables. The extensive experiments demonstrate that our C2MN-based semantic annotation is efficient and effective on both real and synthetic indoor mobility data.