减少和控制空气污染:基于植物与微生物的相互作用

IF 3.6 4区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yue Li, Xiangmeng Chen, C. Sonne, S. Lam, Yafeng Yang, N. Ma, W. Peng
{"title":"减少和控制空气污染:基于植物与微生物的相互作用","authors":"Yue Li, Xiangmeng Chen, C. Sonne, S. Lam, Yafeng Yang, N. Ma, W. Peng","doi":"10.1080/26395940.2023.2173657","DOIUrl":null,"url":null,"abstract":"ABSTRACT Economic development brings environmental challenges of which air pollution poses serious risks to humans and ecosystems. Air pollutants include volatile organic compounds (VOCs), inorganic air pollutants (IAPs) and particulate matter (PMs). Plant leaves may reduce such air pollution through adsorption and stomatal absorption. At the same time, air pollutants enter soil and root zones due to its content in rain and leaf fall. Microorganisms degrade and transform air pollutions. However, the efficiency of phytoremediation and bioremediation is slow and the use of plant-microbe interactions may therefore greatly enhance the efficiency of phytoremediation. The release of chemicals from plants leads to a mutual interaction with the microbiome that promotes the growth of the plant itself, thus enhancing degradation and detoxification of interleaf and inter-root air pollutants. Here we review the current research progress on combined plant-microbe action and discusses the interaction between plants and associated microorganisms while providing perspectives for future research in phytotechnologies. Graphical Abstract","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reduction and control of air pollution: based on plant-microbe interactions\",\"authors\":\"Yue Li, Xiangmeng Chen, C. Sonne, S. Lam, Yafeng Yang, N. Ma, W. Peng\",\"doi\":\"10.1080/26395940.2023.2173657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Economic development brings environmental challenges of which air pollution poses serious risks to humans and ecosystems. Air pollutants include volatile organic compounds (VOCs), inorganic air pollutants (IAPs) and particulate matter (PMs). Plant leaves may reduce such air pollution through adsorption and stomatal absorption. At the same time, air pollutants enter soil and root zones due to its content in rain and leaf fall. Microorganisms degrade and transform air pollutions. However, the efficiency of phytoremediation and bioremediation is slow and the use of plant-microbe interactions may therefore greatly enhance the efficiency of phytoremediation. The release of chemicals from plants leads to a mutual interaction with the microbiome that promotes the growth of the plant itself, thus enhancing degradation and detoxification of interleaf and inter-root air pollutants. Here we review the current research progress on combined plant-microbe action and discusses the interaction between plants and associated microorganisms while providing perspectives for future research in phytotechnologies. Graphical Abstract\",\"PeriodicalId\":11785,\"journal\":{\"name\":\"Environmental Pollutants and Bioavailability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollutants and Bioavailability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/26395940.2023.2173657\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollutants and Bioavailability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/26395940.2023.2173657","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction and control of air pollution: based on plant-microbe interactions
ABSTRACT Economic development brings environmental challenges of which air pollution poses serious risks to humans and ecosystems. Air pollutants include volatile organic compounds (VOCs), inorganic air pollutants (IAPs) and particulate matter (PMs). Plant leaves may reduce such air pollution through adsorption and stomatal absorption. At the same time, air pollutants enter soil and root zones due to its content in rain and leaf fall. Microorganisms degrade and transform air pollutions. However, the efficiency of phytoremediation and bioremediation is slow and the use of plant-microbe interactions may therefore greatly enhance the efficiency of phytoremediation. The release of chemicals from plants leads to a mutual interaction with the microbiome that promotes the growth of the plant itself, thus enhancing degradation and detoxification of interleaf and inter-root air pollutants. Here we review the current research progress on combined plant-microbe action and discusses the interaction between plants and associated microorganisms while providing perspectives for future research in phytotechnologies. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Pollutants and Bioavailability
Environmental Pollutants and Bioavailability Chemical Engineering-Chemical Health and Safety
CiteScore
4.30
自引率
3.00%
发文量
47
审稿时长
13 weeks
期刊介绍: Environmental Pollutants & Bioavailability is a peer-reviewed open access forum for insights on the chemical aspects of pollutants in the environment and biota, and their impacts on the uptake of the substances by living organisms. Topics include the occurrence, distribution, transport, transformation, transfer, fate, and effects of environmental pollutants, as well as their impact on living organisms. Substances of interests include heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信