Harald Altinger, S. Herbold, F. Schneemann, J. Grabowski, F. Wotawa
{"title":"汽车软件故障预测的性能调优","authors":"Harald Altinger, S. Herbold, F. Schneemann, J. Grabowski, F. Wotawa","doi":"10.1109/SANER.2017.7884667","DOIUrl":null,"url":null,"abstract":"Fault prediction on high quality industry grade software often suffers from strong imbalanced class distribution due to a low bug rate. Previous work reports on low predictive performance, thus tuning parameters is required. As the State of the Art recommends sampling methods for imbalanced learning, we analyse effects when under- and oversampling the training data evaluated on seven different classification algorithms. Our results demonstrate settings to achieve higher performance values but the various classifiers are influenced in different ways. Furthermore, not all performance reports can be tuned at the same time.","PeriodicalId":6541,"journal":{"name":"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"25 1","pages":"526-530"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Performance tuning for automotive Software Fault Prediction\",\"authors\":\"Harald Altinger, S. Herbold, F. Schneemann, J. Grabowski, F. Wotawa\",\"doi\":\"10.1109/SANER.2017.7884667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault prediction on high quality industry grade software often suffers from strong imbalanced class distribution due to a low bug rate. Previous work reports on low predictive performance, thus tuning parameters is required. As the State of the Art recommends sampling methods for imbalanced learning, we analyse effects when under- and oversampling the training data evaluated on seven different classification algorithms. Our results demonstrate settings to achieve higher performance values but the various classifiers are influenced in different ways. Furthermore, not all performance reports can be tuned at the same time.\",\"PeriodicalId\":6541,\"journal\":{\"name\":\"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"25 1\",\"pages\":\"526-530\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SANER.2017.7884667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2017.7884667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance tuning for automotive Software Fault Prediction
Fault prediction on high quality industry grade software often suffers from strong imbalanced class distribution due to a low bug rate. Previous work reports on low predictive performance, thus tuning parameters is required. As the State of the Art recommends sampling methods for imbalanced learning, we analyse effects when under- and oversampling the training data evaluated on seven different classification algorithms. Our results demonstrate settings to achieve higher performance values but the various classifiers are influenced in different ways. Furthermore, not all performance reports can be tuned at the same time.