从数论、物理和拓扑学的三个Hopf代数及其共同背景II:一般范畴公式

Imma G'alvez-Carrillo, R. Kaufmann, A. Tonks
{"title":"从数论、物理和拓扑学的三个Hopf代数及其共同背景II:一般范畴公式","authors":"Imma G'alvez-Carrillo, R. Kaufmann, A. Tonks","doi":"10.4310/cntp.2020.v14.n1.a2","DOIUrl":null,"url":null,"abstract":"We consider three a priori totally different setups for Hopf algebras from number theory, mathematical physics and algebraic topology. These are the Hopf algebra of Goncharov for multiple zeta values, that of Connes-Kreimer for renormalization, and a Hopf algebra constructed by Baues to study double loop spaces. We show that these examples can be successively unified by considering simplicial objects, co-operads with multiplication and Feynman categories at the ultimate level. These considerations open the door to new constructions and reinterpretations of known constructions in a large common framework which is presented step-by-step with examples throughout. In this second part of two papers, we give the general categorical formulation.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Three Hopf algebras from number theory, physics & topology, and their common background II: general categorical formulation\",\"authors\":\"Imma G'alvez-Carrillo, R. Kaufmann, A. Tonks\",\"doi\":\"10.4310/cntp.2020.v14.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider three a priori totally different setups for Hopf algebras from number theory, mathematical physics and algebraic topology. These are the Hopf algebra of Goncharov for multiple zeta values, that of Connes-Kreimer for renormalization, and a Hopf algebra constructed by Baues to study double loop spaces. We show that these examples can be successively unified by considering simplicial objects, co-operads with multiplication and Feynman categories at the ultimate level. These considerations open the door to new constructions and reinterpretations of known constructions in a large common framework which is presented step-by-step with examples throughout. In this second part of two papers, we give the general categorical formulation.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2020.v14.n1.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cntp.2020.v14.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们从数论、数学物理和代数拓扑三个方面先验地考虑了Hopf代数的三种完全不同的设置。这些是Goncharov的多重zeta值的Hopf代数,cones - kreimer的重整化的Hopf代数,以及Baues构造的研究双环空间的Hopf代数。我们证明了这些例子可以通过考虑简单对象,与乘法和费曼范畴在最终水平上的合作来连续统一。这些考虑为新结构和在一个大的公共框架中对已知结构的重新解释打开了大门,该框架通过示例逐步呈现。在这两篇文章的第二部分,我们给出了一般的范畴公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three Hopf algebras from number theory, physics & topology, and their common background II: general categorical formulation
We consider three a priori totally different setups for Hopf algebras from number theory, mathematical physics and algebraic topology. These are the Hopf algebra of Goncharov for multiple zeta values, that of Connes-Kreimer for renormalization, and a Hopf algebra constructed by Baues to study double loop spaces. We show that these examples can be successively unified by considering simplicial objects, co-operads with multiplication and Feynman categories at the ultimate level. These considerations open the door to new constructions and reinterpretations of known constructions in a large common framework which is presented step-by-step with examples throughout. In this second part of two papers, we give the general categorical formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信