SiC/Si-W-Mo涂层在1873 K下保护C/C复合材料

Dangshe Hou, Kezhi Li, Hejun Li, Qiangang Fu, Yulei Zhang
{"title":"SiC/Si-W-Mo涂层在1873 K下保护C/C复合材料","authors":"Dangshe Hou,&nbsp;Kezhi Li,&nbsp;Hejun Li,&nbsp;Qiangang Fu,&nbsp;Yulei Zhang","doi":"10.1016/S1005-8850(08)60294-7","DOIUrl":null,"url":null,"abstract":"<div><p>In order to prevent carbon/carbon composites from oxidation at 1873 K, an efficient oxidation protective SiC/Si-W-Mo coating was prepared by a two-step pack cementation technique. The microstructures and the phase composition of the as-received multi-coating were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It is seen that the compact multi-coating is composed of α-SiC, Si, and (W<sub><em>x</em></sub>Mo<sub>1–<em>x</em></sub>)Si<sub>2</sub>. Oxidation test shows that, after oxidation at 1873 K in air for 102 h and thermal cycling between 1873 K and room temperature for 10 times, the weight loss of the SiC/Si-W-Mo coated C/C composites is only 0.26%. The invalidation of the multi-coating is attributed to the formation of penetrable cracks in the coating.</p></div>","PeriodicalId":100851,"journal":{"name":"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material","volume":"15 6","pages":"Pages 822-826"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8850(08)60294-7","citationCount":"2","resultStr":"{\"title\":\"SiC/Si-W-Mo coating for protection of C/C composites at 1873 K\",\"authors\":\"Dangshe Hou,&nbsp;Kezhi Li,&nbsp;Hejun Li,&nbsp;Qiangang Fu,&nbsp;Yulei Zhang\",\"doi\":\"10.1016/S1005-8850(08)60294-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to prevent carbon/carbon composites from oxidation at 1873 K, an efficient oxidation protective SiC/Si-W-Mo coating was prepared by a two-step pack cementation technique. The microstructures and the phase composition of the as-received multi-coating were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It is seen that the compact multi-coating is composed of α-SiC, Si, and (W<sub><em>x</em></sub>Mo<sub>1–<em>x</em></sub>)Si<sub>2</sub>. Oxidation test shows that, after oxidation at 1873 K in air for 102 h and thermal cycling between 1873 K and room temperature for 10 times, the weight loss of the SiC/Si-W-Mo coated C/C composites is only 0.26%. The invalidation of the multi-coating is attributed to the formation of penetrable cracks in the coating.</p></div>\",\"PeriodicalId\":100851,\"journal\":{\"name\":\"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material\",\"volume\":\"15 6\",\"pages\":\"Pages 822-826\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1005-8850(08)60294-7\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1005885008602947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005885008602947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了防止碳/碳复合材料在1873 K时发生氧化,采用两步包埋胶结技术制备了一种高效的抗氧化SiC/Si-W-Mo涂层。采用扫描电子显微镜(SEM)和x射线衍射仪(XRD)研究了复合涂层的微观结构和相组成。由α-SiC、Si和(WxMo1-x)Si2组成致密的复合涂层。氧化试验表明,在1873 K空气中氧化102 h,在1873 K至室温之间热循环10次后,SiC/Si-W-Mo涂层C/C复合材料的失重率仅为0.26%。多层涂层失效的原因是涂层中形成了可穿透的裂纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SiC/Si-W-Mo coating for protection of C/C composites at 1873 K

In order to prevent carbon/carbon composites from oxidation at 1873 K, an efficient oxidation protective SiC/Si-W-Mo coating was prepared by a two-step pack cementation technique. The microstructures and the phase composition of the as-received multi-coating were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It is seen that the compact multi-coating is composed of α-SiC, Si, and (WxMo1–x)Si2. Oxidation test shows that, after oxidation at 1873 K in air for 102 h and thermal cycling between 1873 K and room temperature for 10 times, the weight loss of the SiC/Si-W-Mo coated C/C composites is only 0.26%. The invalidation of the multi-coating is attributed to the formation of penetrable cracks in the coating.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信