基于粒子群的电动汽车单相逆变器终端滑模灰色预测器控制

E. Chang, Lung-Sheng Yang, K. Liao
{"title":"基于粒子群的电动汽车单相逆变器终端滑模灰色预测器控制","authors":"E. Chang, Lung-Sheng Yang, K. Liao","doi":"10.18178/IJOEE.3.3.186-190","DOIUrl":null,"url":null,"abstract":"This paper proposes a particle swarm-based terminal sliding mode control with grey predictor, and then the proposed controller is applied for the single-phase inverter of the electric vehicle. The proposed controller has the advantages of terminal sliding mode control (TSMC), grey predictor (GP), and particle swarm optimization (PSO). The TSMC can force the system tracking error to converge to zero in finite time, but the chattering and steady-state errors still happen. The GP is thus employed to lessen the chattering or reduce the steady-state errors when system uncertainty bounds are overestimated or underestimated. Also, the control gains of the TSMC with GP can optimally be tuned by the use of the PSO for achieving more precise tracking. Experimental results on a single-phase inverter laboratory prototype controlled by a digital-based controller are given to conform that the proposed controller can lead to low total harmonic distortion (THD) and fast dynamic response under rectifier-type loading conditions and fast dynamic response under step change loading conditions.","PeriodicalId":13951,"journal":{"name":"International Journal of Electrical Energy","volume":"34 1","pages":"186-190"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Particle Swarm-Based Terminal Sliding Mode Control with Grey Predictor of a Single-Phase Inverter for Electric Vehicles\",\"authors\":\"E. Chang, Lung-Sheng Yang, K. Liao\",\"doi\":\"10.18178/IJOEE.3.3.186-190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a particle swarm-based terminal sliding mode control with grey predictor, and then the proposed controller is applied for the single-phase inverter of the electric vehicle. The proposed controller has the advantages of terminal sliding mode control (TSMC), grey predictor (GP), and particle swarm optimization (PSO). The TSMC can force the system tracking error to converge to zero in finite time, but the chattering and steady-state errors still happen. The GP is thus employed to lessen the chattering or reduce the steady-state errors when system uncertainty bounds are overestimated or underestimated. Also, the control gains of the TSMC with GP can optimally be tuned by the use of the PSO for achieving more precise tracking. Experimental results on a single-phase inverter laboratory prototype controlled by a digital-based controller are given to conform that the proposed controller can lead to low total harmonic distortion (THD) and fast dynamic response under rectifier-type loading conditions and fast dynamic response under step change loading conditions.\",\"PeriodicalId\":13951,\"journal\":{\"name\":\"International Journal of Electrical Energy\",\"volume\":\"34 1\",\"pages\":\"186-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/IJOEE.3.3.186-190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/IJOEE.3.3.186-190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于粒子群的带灰色预测器的终端滑模控制方法,并将其应用于电动汽车单相逆变器。该控制器具有终端滑模控制(TSMC)、灰色预测器(GP)和粒子群优化(PSO)的优点。TSMC可以使系统跟踪误差在有限时间内收敛到零,但仍然存在抖振和稳态误差。因此,当系统的不确定性界被高估或低估时,采用GP来减小抖振或减小稳态误差。此外,使用PSO可以最佳地调整具有GP的TSMC的控制增益,以实现更精确的跟踪。给出了用数字控制器控制的单相逆变器实验室样机的实验结果,表明该控制器在整流型负载条件下具有较低的总谐波失真(THD)和较快的动态响应速度,在阶跃变化负载条件下具有较快的动态响应速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Swarm-Based Terminal Sliding Mode Control with Grey Predictor of a Single-Phase Inverter for Electric Vehicles
This paper proposes a particle swarm-based terminal sliding mode control with grey predictor, and then the proposed controller is applied for the single-phase inverter of the electric vehicle. The proposed controller has the advantages of terminal sliding mode control (TSMC), grey predictor (GP), and particle swarm optimization (PSO). The TSMC can force the system tracking error to converge to zero in finite time, but the chattering and steady-state errors still happen. The GP is thus employed to lessen the chattering or reduce the steady-state errors when system uncertainty bounds are overestimated or underestimated. Also, the control gains of the TSMC with GP can optimally be tuned by the use of the PSO for achieving more precise tracking. Experimental results on a single-phase inverter laboratory prototype controlled by a digital-based controller are given to conform that the proposed controller can lead to low total harmonic distortion (THD) and fast dynamic response under rectifier-type loading conditions and fast dynamic response under step change loading conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信