三维三次非线性Schrödinger方程的爆破解

J. Holmer, S. Roudenko
{"title":"三维三次非线性Schrödinger方程的爆破解","authors":"J. Holmer, S. Roudenko","doi":"10.1093/AMRX/ABM004","DOIUrl":null,"url":null,"abstract":"For the 3d cubic nonlinear Schrodinger (NLS) equation, which has critical (scaling) norms L 3 and u H 1/2 , we first prove a result establishing sufficient conditions for global existence and sufficient conditions for finite-time blow-up. For the rest of the paper, we focus on the study of finite-time radial blow-up solutions, and prove a result on the concentration of the L 3 norm at the origin. Two disparate possibilities emerge, one which coincides with solutions typically observed in numer- ical experiments that consist of a specific bump profile with maximum at the origin and focus toward the origin at rate ∼ (T − t) 1/2 , where T > 0 is the blow-up time. For the other possibility, we propose the existence of \"contracting sphere blow-up solutions\", i.e. those that concentrate on a sphere of radius ∼ (T −t) 1/3 , but focus towards this sphere at a faster rate ∼ (T − t) 2/3 . These conjectured solutions are analyzed through heuristic arguments and shown (at this level of precision) to be consistent with all conservation laws of the equation.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"On Blow-up Solutions to the 3D Cubic Nonlinear Schrödinger Equation\",\"authors\":\"J. Holmer, S. Roudenko\",\"doi\":\"10.1093/AMRX/ABM004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the 3d cubic nonlinear Schrodinger (NLS) equation, which has critical (scaling) norms L 3 and u H 1/2 , we first prove a result establishing sufficient conditions for global existence and sufficient conditions for finite-time blow-up. For the rest of the paper, we focus on the study of finite-time radial blow-up solutions, and prove a result on the concentration of the L 3 norm at the origin. Two disparate possibilities emerge, one which coincides with solutions typically observed in numer- ical experiments that consist of a specific bump profile with maximum at the origin and focus toward the origin at rate ∼ (T − t) 1/2 , where T > 0 is the blow-up time. For the other possibility, we propose the existence of \\\"contracting sphere blow-up solutions\\\", i.e. those that concentrate on a sphere of radius ∼ (T −t) 1/3 , but focus towards this sphere at a faster rate ∼ (T − t) 2/3 . These conjectured solutions are analyzed through heuristic arguments and shown (at this level of precision) to be consistent with all conservation laws of the equation.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABM004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABM004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

对于具有临界(标度)范数l3和u H 1/2的三维三次非线性薛定谔方程,首先证明了建立全局存在的充分条件和有限时间爆破的充分条件的结果。在本文的其余部分,我们着重研究了有限时间径向爆破解,并证明了一个关于原点处l3范数浓度的结果。出现了两种不同的可能性,其中一种与通常在数值实验中观察到的解决方案相一致,该解决方案由特定的碰撞轮廓组成,在原点处最大,并以速率~ (T−T) 1/2聚焦于原点,其中T > 0是爆炸时间。对于另一种可能性,我们提出了“收缩球体爆破解”的存在,即那些集中在半径为~ (T−T) 1/3的球体上,但以更快的速度集中在这个球体上~ (T−T) 2/3。通过启发式论证分析这些推测的解,并显示(在这种精度水平上)与方程的所有守恒定律一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Blow-up Solutions to the 3D Cubic Nonlinear Schrödinger Equation
For the 3d cubic nonlinear Schrodinger (NLS) equation, which has critical (scaling) norms L 3 and u H 1/2 , we first prove a result establishing sufficient conditions for global existence and sufficient conditions for finite-time blow-up. For the rest of the paper, we focus on the study of finite-time radial blow-up solutions, and prove a result on the concentration of the L 3 norm at the origin. Two disparate possibilities emerge, one which coincides with solutions typically observed in numer- ical experiments that consist of a specific bump profile with maximum at the origin and focus toward the origin at rate ∼ (T − t) 1/2 , where T > 0 is the blow-up time. For the other possibility, we propose the existence of "contracting sphere blow-up solutions", i.e. those that concentrate on a sphere of radius ∼ (T −t) 1/3 , but focus towards this sphere at a faster rate ∼ (T − t) 2/3 . These conjectured solutions are analyzed through heuristic arguments and shown (at this level of precision) to be consistent with all conservation laws of the equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信