具有退化井的半经典Schrödinger算子的低洼特征值

Asymptot. Anal. Pub Date : 2018-02-08 DOI:10.3233/ASY-181493
J. Bony, N. Popoff
{"title":"具有退化井的半经典Schrödinger算子的低洼特征值","authors":"J. Bony, N. Popoff","doi":"10.3233/ASY-181493","DOIUrl":null,"url":null,"abstract":"In this article, we consider the semiclassical Schr\\\"odinger operator $P = - h^{2} \\Delta + V$ in $\\mathbb{R}^{d}$ with confining non-negative potential $V$ which vanishes, and study its low-lying eigenvalues $\\lambda_{k} ( P )$ as $h \\to 0$. First, we give a necessary and sufficient criterion upon $V^{-1} ( 0 )$ for $\\lambda_{1} ( P ) h^{- 2}$ to be bounded. When $d = 1$ and $V^{-1} ( 0 ) = \\{ 0 \\}$, we are able to control the eigenvalues $\\lambda_{k} ( P )$ for monotonous potentials by a quantity linked to an interval $I_{h}$, determined by an implicit relation involving $V$ and $h$. Next, we consider the case where $V$ has a flat minimum, in the sense that it vanishes to infinite order. We give the asymptotic of the eigenvalues: they behave as the eigenvalues of the Dirichlet Laplacian on $I_{h}$. Our analysis includes an asymptotic of the associated eigenvectors and extends in particular cases to higher dimensions.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"2 1","pages":"23-36"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-lying eigenvalues of semiclassical Schrödinger operator with degenerate wells\",\"authors\":\"J. Bony, N. Popoff\",\"doi\":\"10.3233/ASY-181493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider the semiclassical Schr\\\\\\\"odinger operator $P = - h^{2} \\\\Delta + V$ in $\\\\mathbb{R}^{d}$ with confining non-negative potential $V$ which vanishes, and study its low-lying eigenvalues $\\\\lambda_{k} ( P )$ as $h \\\\to 0$. First, we give a necessary and sufficient criterion upon $V^{-1} ( 0 )$ for $\\\\lambda_{1} ( P ) h^{- 2}$ to be bounded. When $d = 1$ and $V^{-1} ( 0 ) = \\\\{ 0 \\\\}$, we are able to control the eigenvalues $\\\\lambda_{k} ( P )$ for monotonous potentials by a quantity linked to an interval $I_{h}$, determined by an implicit relation involving $V$ and $h$. Next, we consider the case where $V$ has a flat minimum, in the sense that it vanishes to infinite order. We give the asymptotic of the eigenvalues: they behave as the eigenvalues of the Dirichlet Laplacian on $I_{h}$. Our analysis includes an asymptotic of the associated eigenvectors and extends in particular cases to higher dimensions.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"2 1\",\"pages\":\"23-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-181493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们考虑半经典Schrödinger算子 $P = - h^{2} \Delta + V$ 在 $\mathbb{R}^{d}$ 具有限制性非负电位 $V$ 哪个消失了,然后研究它的低特征值 $\lambda_{k} ( P )$ as $h \to 0$. 首先,我们给出了一个必要和充分的标准 $V^{-1} ( 0 )$ 为了 $\lambda_{1} ( P ) h^{- 2}$ 被限定。什么时候 $d = 1$ 和 $V^{-1} ( 0 ) = \{ 0 \}$,我们就能控制特征值 $\lambda_{k} ( P )$ 用一个与区间相联系的量来表示单调势 $I_{h}$,由隐含关系所决定 $V$ 和 $h$. 接下来,我们考虑 $V$ 有一个平坦的最小值,在这个意义上,它消失到无限的顺序。我们给出了特征值的渐近性:它们表现为狄利克雷拉普拉斯算子的特征值 $I_{h}$. 我们的分析包括相关特征向量的渐近,并在特定情况下扩展到更高的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-lying eigenvalues of semiclassical Schrödinger operator with degenerate wells
In this article, we consider the semiclassical Schr\"odinger operator $P = - h^{2} \Delta + V$ in $\mathbb{R}^{d}$ with confining non-negative potential $V$ which vanishes, and study its low-lying eigenvalues $\lambda_{k} ( P )$ as $h \to 0$. First, we give a necessary and sufficient criterion upon $V^{-1} ( 0 )$ for $\lambda_{1} ( P ) h^{- 2}$ to be bounded. When $d = 1$ and $V^{-1} ( 0 ) = \{ 0 \}$, we are able to control the eigenvalues $\lambda_{k} ( P )$ for monotonous potentials by a quantity linked to an interval $I_{h}$, determined by an implicit relation involving $V$ and $h$. Next, we consider the case where $V$ has a flat minimum, in the sense that it vanishes to infinite order. We give the asymptotic of the eigenvalues: they behave as the eigenvalues of the Dirichlet Laplacian on $I_{h}$. Our analysis includes an asymptotic of the associated eigenvectors and extends in particular cases to higher dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信