网络边缘的流量感知动态容器部署

Muhamad Rizka Maulana, Hsiao-Yin Peng, Ying-Cen Lai, Li-Der Chou
{"title":"网络边缘的流量感知动态容器部署","authors":"Muhamad Rizka Maulana, Hsiao-Yin Peng, Ying-Cen Lai, Li-Der Chou","doi":"10.1109/ICOIN50884.2021.9333880","DOIUrl":null,"url":null,"abstract":"Multi-access Edge Computing (MEC) offers opportunities for improving the network performance. It can be utilized for improving web application. Every request that is destined for the cloud service providers can be processed at the edge. However, some web applications may have high fluctuation in terms of resource usage, for example e-commerce. The cloud server needs to be able to adapt with the traffic fluctuation by deploying the edge service automatically. We propose a technique for dynamically deploying the edge service by using statistical properties of the traffic, namely the moving average and moving standard deviation. These statistical properties are set as thresholds to decide whether to deploy the edge server or not. If the number of requests is higher than the maximum threshold, the edge server will be deployed. On the other hand, if it is lower than the minimum threshold, the edge server will be removed, if any. We build a testbed to evaluate our technique and the results show that it is feasible to use moving average and moving standard deviation for dynamic deployment.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"39 1","pages":"571-576"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic-aware Dynamic Container Deployment on the Network Edge\",\"authors\":\"Muhamad Rizka Maulana, Hsiao-Yin Peng, Ying-Cen Lai, Li-Der Chou\",\"doi\":\"10.1109/ICOIN50884.2021.9333880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-access Edge Computing (MEC) offers opportunities for improving the network performance. It can be utilized for improving web application. Every request that is destined for the cloud service providers can be processed at the edge. However, some web applications may have high fluctuation in terms of resource usage, for example e-commerce. The cloud server needs to be able to adapt with the traffic fluctuation by deploying the edge service automatically. We propose a technique for dynamically deploying the edge service by using statistical properties of the traffic, namely the moving average and moving standard deviation. These statistical properties are set as thresholds to decide whether to deploy the edge server or not. If the number of requests is higher than the maximum threshold, the edge server will be deployed. On the other hand, if it is lower than the minimum threshold, the edge server will be removed, if any. We build a testbed to evaluate our technique and the results show that it is feasible to use moving average and moving standard deviation for dynamic deployment.\",\"PeriodicalId\":6741,\"journal\":{\"name\":\"2021 International Conference on Information Networking (ICOIN)\",\"volume\":\"39 1\",\"pages\":\"571-576\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN50884.2021.9333880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多接入边缘计算(MEC)为提高网络性能提供了机会。它可以用于改进web应用程序。发送给云服务提供商的每个请求都可以在边缘处理。然而,某些web应用程序在资源使用方面可能有很大的波动,例如电子商务。云服务器需要通过自动部署边缘服务来适应流量的波动。我们提出了一种利用流量的统计特性,即移动平均和移动标准差来动态部署边缘服务的技术。将这些统计属性设置为阈值,以决定是否部署边缘服务器。如果请求数高于最大阈值,则部署边缘服务器。另一方面,如果它低于最小阈值,则将删除边缘服务器(如果有)。我们建立了一个测试平台来评估我们的技术,结果表明使用移动平均和移动标准差进行动态部署是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic-aware Dynamic Container Deployment on the Network Edge
Multi-access Edge Computing (MEC) offers opportunities for improving the network performance. It can be utilized for improving web application. Every request that is destined for the cloud service providers can be processed at the edge. However, some web applications may have high fluctuation in terms of resource usage, for example e-commerce. The cloud server needs to be able to adapt with the traffic fluctuation by deploying the edge service automatically. We propose a technique for dynamically deploying the edge service by using statistical properties of the traffic, namely the moving average and moving standard deviation. These statistical properties are set as thresholds to decide whether to deploy the edge server or not. If the number of requests is higher than the maximum threshold, the edge server will be deployed. On the other hand, if it is lower than the minimum threshold, the edge server will be removed, if any. We build a testbed to evaluate our technique and the results show that it is feasible to use moving average and moving standard deviation for dynamic deployment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信