{"title":"燃料电池混合动力系统的功率分配策略","authors":"D. Domenico, Carmelo Speltino, G. Fiengo","doi":"10.2516/OGST/2009039","DOIUrl":null,"url":null,"abstract":"The power management of a hybrid system composed of a fuel cell, a battery and a DC/DC power converter is developed. A decoupled control strategy is proposed, aimed at balancing the power flow between the stack and the battery and avoiding electrochemical damage due to low oxygen concentration in the fuel cell cathode. The controller is composed of two components. The first controller regulates the compressor, and as a consequence the oxygen supplied to the cathode, via a classic Proportional-Integral controller. The second controller optimally manages the current demanded by the fuel cell and battery via a linear-quadratic control strategy acting on the converter. An Extended Kalman Filter is also designed in order to estimate the battery State of Charge. The closed-loop performance was tested in simulation using a 310th-order system model.","PeriodicalId":19444,"journal":{"name":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","volume":"5 1","pages":"145-154"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Power Split Strategy for Fuel Cell Hybrid Electric System\",\"authors\":\"D. Domenico, Carmelo Speltino, G. Fiengo\",\"doi\":\"10.2516/OGST/2009039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power management of a hybrid system composed of a fuel cell, a battery and a DC/DC power converter is developed. A decoupled control strategy is proposed, aimed at balancing the power flow between the stack and the battery and avoiding electrochemical damage due to low oxygen concentration in the fuel cell cathode. The controller is composed of two components. The first controller regulates the compressor, and as a consequence the oxygen supplied to the cathode, via a classic Proportional-Integral controller. The second controller optimally manages the current demanded by the fuel cell and battery via a linear-quadratic control strategy acting on the converter. An Extended Kalman Filter is also designed in order to estimate the battery State of Charge. The closed-loop performance was tested in simulation using a 310th-order system model.\",\"PeriodicalId\":19444,\"journal\":{\"name\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"volume\":\"5 1\",\"pages\":\"145-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2516/OGST/2009039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2516/OGST/2009039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power Split Strategy for Fuel Cell Hybrid Electric System
The power management of a hybrid system composed of a fuel cell, a battery and a DC/DC power converter is developed. A decoupled control strategy is proposed, aimed at balancing the power flow between the stack and the battery and avoiding electrochemical damage due to low oxygen concentration in the fuel cell cathode. The controller is composed of two components. The first controller regulates the compressor, and as a consequence the oxygen supplied to the cathode, via a classic Proportional-Integral controller. The second controller optimally manages the current demanded by the fuel cell and battery via a linear-quadratic control strategy acting on the converter. An Extended Kalman Filter is also designed in order to estimate the battery State of Charge. The closed-loop performance was tested in simulation using a 310th-order system model.