基于线弹性理论的层合梁和夹层梁静力和自由振动半解析分析

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Zhao Yin, Hangduo Gao, G. Lin
{"title":"基于线弹性理论的层合梁和夹层梁静力和自由振动半解析分析","authors":"Zhao Yin, Hangduo Gao, G. Lin","doi":"10.1177/03093247211062688","DOIUrl":null,"url":null,"abstract":"Based on the two-dimensional (2D) elastic theory without enforcing any beam assumption, an efficient semi-analytical scaled boundary finite element method (SBFEM) is proposed to solve the bending and free vibration responses of composite laminated and sandwich beams under the mechanical load. The scaled center is placed at infinity, which produces the accurate result by discretizing only the longitudinal direction of the beam structure treated as a one-dimensional (1D) discretization problem. A new kind of 1D high-order spectral element shape functions with the advantages of high accuracy and superior convergence is introduced in SBFEM coordinate system to approximate the geometric model and corresponding variables. The principle of weighted residual in conjunction with the Green’s theorem are applied to obtain the SBFEM governing equation of each layer with respect to radial displacement fields. The solution of equation is indicated analytically by a matrix exponential function, which can be accurately solved by using the precise integration technique (PIT). Finally, an effective and simple stiffness matrix is obtained. By comparing two examples with the solutions based on the finite element method (FEM), the results show that the proposed method has good accuracy and rapid convergence with only a few meshes. The numerical examples are given to investigate the parametric effects of the stacking sequence, thickness ratio, boundary condition, and load form on the variation of the displacement, stress and natural frequency. The results validate that the present technique is also applicable to the complex beam structure with softcore layer inside.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient semi-analytical static and free vibration analysis of laminated and sandwich beams based on linear elasticity theory\",\"authors\":\"Zhao Yin, Hangduo Gao, G. Lin\",\"doi\":\"10.1177/03093247211062688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the two-dimensional (2D) elastic theory without enforcing any beam assumption, an efficient semi-analytical scaled boundary finite element method (SBFEM) is proposed to solve the bending and free vibration responses of composite laminated and sandwich beams under the mechanical load. The scaled center is placed at infinity, which produces the accurate result by discretizing only the longitudinal direction of the beam structure treated as a one-dimensional (1D) discretization problem. A new kind of 1D high-order spectral element shape functions with the advantages of high accuracy and superior convergence is introduced in SBFEM coordinate system to approximate the geometric model and corresponding variables. The principle of weighted residual in conjunction with the Green’s theorem are applied to obtain the SBFEM governing equation of each layer with respect to radial displacement fields. The solution of equation is indicated analytically by a matrix exponential function, which can be accurately solved by using the precise integration technique (PIT). Finally, an effective and simple stiffness matrix is obtained. By comparing two examples with the solutions based on the finite element method (FEM), the results show that the proposed method has good accuracy and rapid convergence with only a few meshes. The numerical examples are given to investigate the parametric effects of the stacking sequence, thickness ratio, boundary condition, and load form on the variation of the displacement, stress and natural frequency. The results validate that the present technique is also applicable to the complex beam structure with softcore layer inside.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247211062688\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247211062688","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

基于二维弹性理论,在不强制任何梁假设的情况下,提出了一种有效的半解析尺度边界有限元法(SBFEM)来求解复合材料层合梁和夹层梁在机械载荷作用下的弯曲和自由振动响应。将尺度中心置于无穷远处,将梁结构的纵向作为一维离散问题进行离散,从而得到精确的结果。在SBFEM坐标系中引入一种精度高、收敛性强的一维高阶谱元形状函数来逼近几何模型和相应的变量。利用加权残差原理,结合格林定理,得到了各层径向位移场的SBFEM控制方程。方程的解用矩阵指数函数解析表示,用精确积分技术(PIT)可以精确求解。最后,得到了一个简单有效的刚度矩阵。通过两个算例与基于有限元法(FEM)的解进行比较,结果表明该方法具有精度好、收敛速度快、网格数少的优点。通过数值算例,研究了堆积顺序、厚度比、边界条件和荷载形式等参数对位移、应力和固有频率变化的影响。结果表明,该方法同样适用于含有软芯层的复杂梁结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient semi-analytical static and free vibration analysis of laminated and sandwich beams based on linear elasticity theory
Based on the two-dimensional (2D) elastic theory without enforcing any beam assumption, an efficient semi-analytical scaled boundary finite element method (SBFEM) is proposed to solve the bending and free vibration responses of composite laminated and sandwich beams under the mechanical load. The scaled center is placed at infinity, which produces the accurate result by discretizing only the longitudinal direction of the beam structure treated as a one-dimensional (1D) discretization problem. A new kind of 1D high-order spectral element shape functions with the advantages of high accuracy and superior convergence is introduced in SBFEM coordinate system to approximate the geometric model and corresponding variables. The principle of weighted residual in conjunction with the Green’s theorem are applied to obtain the SBFEM governing equation of each layer with respect to radial displacement fields. The solution of equation is indicated analytically by a matrix exponential function, which can be accurately solved by using the precise integration technique (PIT). Finally, an effective and simple stiffness matrix is obtained. By comparing two examples with the solutions based on the finite element method (FEM), the results show that the proposed method has good accuracy and rapid convergence with only a few meshes. The numerical examples are given to investigate the parametric effects of the stacking sequence, thickness ratio, boundary condition, and load form on the variation of the displacement, stress and natural frequency. The results validate that the present technique is also applicable to the complex beam structure with softcore layer inside.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Strain Analysis for Engineering Design
Journal of Strain Analysis for Engineering Design 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice. "Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信