系统排名的量化偏差和方差

G. Cormack, Maura R. Grossman
{"title":"系统排名的量化偏差和方差","authors":"G. Cormack, Maura R. Grossman","doi":"10.1145/3331184.3331356","DOIUrl":null,"url":null,"abstract":"When used to assess the accuracy of system rankings, Kendall's tau and other rank correlation measures conflate bias and variance as sources of error. We derive from tau a distance between rankings in Euclidean space, from which we can determine the magnitude of bias, variance, and error. Using bootstrap estimation, we show that shallow pooling has substantially higher bias and insubstantially lower variance than probability-proportional-to-size sampling, coupled with the recently released dynAP estimator.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quantifying Bias and Variance of System Rankings\",\"authors\":\"G. Cormack, Maura R. Grossman\",\"doi\":\"10.1145/3331184.3331356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When used to assess the accuracy of system rankings, Kendall's tau and other rank correlation measures conflate bias and variance as sources of error. We derive from tau a distance between rankings in Euclidean space, from which we can determine the magnitude of bias, variance, and error. Using bootstrap estimation, we show that shallow pooling has substantially higher bias and insubstantially lower variance than probability-proportional-to-size sampling, coupled with the recently released dynAP estimator.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

当用于评估系统排名的准确性时,肯德尔的tau和其他排名相关度量将偏差和方差合并为误差来源。我们从欧几里得空间中排名之间的距离得到tau,从中我们可以确定偏差,方差和误差的大小。使用自举估计,我们表明,与最近发布的dynAP估计器相比,浅池化具有显着更高的偏差和显着更低的方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying Bias and Variance of System Rankings
When used to assess the accuracy of system rankings, Kendall's tau and other rank correlation measures conflate bias and variance as sources of error. We derive from tau a distance between rankings in Euclidean space, from which we can determine the magnitude of bias, variance, and error. Using bootstrap estimation, we show that shallow pooling has substantially higher bias and insubstantially lower variance than probability-proportional-to-size sampling, coupled with the recently released dynAP estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信