T. Martin, A. Ghiotto, T. Vuong, K. Wu, Frédéric Lotz
{"title":"具有多层交叉耦合的紧凑准椭圆高选择性AFSIW滤波器","authors":"T. Martin, A. Ghiotto, T. Vuong, K. Wu, Frédéric Lotz","doi":"10.1109/mwsym.2019.8700728","DOIUrl":null,"url":null,"abstract":"A quasi-elliptic filter topology based on high performance air-filled substrate integrated waveguide (AFSIW) technological platform is presented. This new topology takes advantage of the AFSIW multilayer property to implement a cross coupling between non-adjacent resonators while maintaining the self-packaging characteristics of AFSIW filters. By etching inductive windows on the top copper layer of the AFSIW bottom substrate, a second signal path is created using an SIW transmission line. Thus, the primary path of the signal is implemented using a lossless medium (air in the milled inner substrate) and the second path is implemented in the bottom substrate. The multipath coupling diagram is constructed, considering a fourth order filter. Then, the relative phase shifts of the primary and secondary path are determined to obtain transmission zeros. For experimental validation, a quasi-elliptic fourth order filter demonstrator operating at 21 GHz with a 350 MHz (1.66 %) bandwidth is designed, fabricated and measured. Furthermore, a study shows its high robustness against printed circuit board (PCB) process manufacturing, considering standard tolerances. In and out band measured results are in a good agreement with simulated results. The fabricated filter achieves an insertion loss as low as 0.7 dB with an excellent unloaded Q-factor of 1478.","PeriodicalId":6720,"journal":{"name":"2019 IEEE MTT-S International Microwave Symposium (IMS)","volume":"22 1","pages":"718-721"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Compact Quasi-Elliptic and Highly Selective AFSIW Filter with Multilayer Cross-Coupling\",\"authors\":\"T. Martin, A. Ghiotto, T. Vuong, K. Wu, Frédéric Lotz\",\"doi\":\"10.1109/mwsym.2019.8700728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quasi-elliptic filter topology based on high performance air-filled substrate integrated waveguide (AFSIW) technological platform is presented. This new topology takes advantage of the AFSIW multilayer property to implement a cross coupling between non-adjacent resonators while maintaining the self-packaging characteristics of AFSIW filters. By etching inductive windows on the top copper layer of the AFSIW bottom substrate, a second signal path is created using an SIW transmission line. Thus, the primary path of the signal is implemented using a lossless medium (air in the milled inner substrate) and the second path is implemented in the bottom substrate. The multipath coupling diagram is constructed, considering a fourth order filter. Then, the relative phase shifts of the primary and secondary path are determined to obtain transmission zeros. For experimental validation, a quasi-elliptic fourth order filter demonstrator operating at 21 GHz with a 350 MHz (1.66 %) bandwidth is designed, fabricated and measured. Furthermore, a study shows its high robustness against printed circuit board (PCB) process manufacturing, considering standard tolerances. In and out band measured results are in a good agreement with simulated results. The fabricated filter achieves an insertion loss as low as 0.7 dB with an excellent unloaded Q-factor of 1478.\",\"PeriodicalId\":6720,\"journal\":{\"name\":\"2019 IEEE MTT-S International Microwave Symposium (IMS)\",\"volume\":\"22 1\",\"pages\":\"718-721\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mwsym.2019.8700728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mwsym.2019.8700728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact Quasi-Elliptic and Highly Selective AFSIW Filter with Multilayer Cross-Coupling
A quasi-elliptic filter topology based on high performance air-filled substrate integrated waveguide (AFSIW) technological platform is presented. This new topology takes advantage of the AFSIW multilayer property to implement a cross coupling between non-adjacent resonators while maintaining the self-packaging characteristics of AFSIW filters. By etching inductive windows on the top copper layer of the AFSIW bottom substrate, a second signal path is created using an SIW transmission line. Thus, the primary path of the signal is implemented using a lossless medium (air in the milled inner substrate) and the second path is implemented in the bottom substrate. The multipath coupling diagram is constructed, considering a fourth order filter. Then, the relative phase shifts of the primary and secondary path are determined to obtain transmission zeros. For experimental validation, a quasi-elliptic fourth order filter demonstrator operating at 21 GHz with a 350 MHz (1.66 %) bandwidth is designed, fabricated and measured. Furthermore, a study shows its high robustness against printed circuit board (PCB) process manufacturing, considering standard tolerances. In and out band measured results are in a good agreement with simulated results. The fabricated filter achieves an insertion loss as low as 0.7 dB with an excellent unloaded Q-factor of 1478.