测定平板折射率的方法

R. B. Johnson, M. Curley
{"title":"测定平板折射率的方法","authors":"R. B. Johnson, M. Curley","doi":"10.1117/12.2531339","DOIUrl":null,"url":null,"abstract":"Minimal refractive index data in the near-infrared spectrum are available for optical plastics. Typically, refractive index measurements are made by fabricating a prism of candidate optical material and using appropriate metrology equipment. Few plastics are available in thicknesses adequate to fabricate appropriate size prisms; however, almost all optical plastics can be acquired in a flat plate form. The investigation considered two fundamental approaches to measure the refractive index by (i) rotating a flat plate and measure the beam displacement and (ii) measuring the optical focal shift. The rotation method was determined not accurate enough. An optical focal shift method optical mechanical (n toptical / tmechanical ) = was developed that utilized existing laboratory equipment. The shift of focus when the plastic plate sample was inserted was located by determining the position of maximum contrast of the projection of a Ronchi ruling target when illuminated by flux from a Cary Eclipse covering the spectral range of 550–975 nm. The instrumentation, data processing, and measurement performance are presented.","PeriodicalId":10843,"journal":{"name":"Current Developments in Lens Design and Optical Engineering XX","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method to determine refractive index by measurement of flat plates\",\"authors\":\"R. B. Johnson, M. Curley\",\"doi\":\"10.1117/12.2531339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Minimal refractive index data in the near-infrared spectrum are available for optical plastics. Typically, refractive index measurements are made by fabricating a prism of candidate optical material and using appropriate metrology equipment. Few plastics are available in thicknesses adequate to fabricate appropriate size prisms; however, almost all optical plastics can be acquired in a flat plate form. The investigation considered two fundamental approaches to measure the refractive index by (i) rotating a flat plate and measure the beam displacement and (ii) measuring the optical focal shift. The rotation method was determined not accurate enough. An optical focal shift method optical mechanical (n toptical / tmechanical ) = was developed that utilized existing laboratory equipment. The shift of focus when the plastic plate sample was inserted was located by determining the position of maximum contrast of the projection of a Ronchi ruling target when illuminated by flux from a Cary Eclipse covering the spectral range of 550–975 nm. The instrumentation, data processing, and measurement performance are presented.\",\"PeriodicalId\":10843,\"journal\":{\"name\":\"Current Developments in Lens Design and Optical Engineering XX\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Developments in Lens Design and Optical Engineering XX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2531339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Developments in Lens Design and Optical Engineering XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2531339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光学塑料的近红外光谱最小折射率数据是可用的。通常,折射率测量是通过制造候选光学材料的棱镜并使用适当的测量设备进行的。很少有塑料的厚度足以制造适当尺寸的棱镜;然而,几乎所有的光学塑料都可以以平板形式获得。研究考虑了测量折射率的两种基本方法:(i)旋转平板并测量光束位移和(ii)测量光学焦移。旋转法被确定为精度不够。利用现有的实验室设备,提出了一种光学焦移法——光学机械法(n topical / tmechanical)。通过确定在550-975 nm光谱范围内的Cary日食照射下Ronchi统治目标投影的最大对比度位置来定位塑料板样品插入时的焦点位移。介绍了仪器、数据处理和测量性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method to determine refractive index by measurement of flat plates
Minimal refractive index data in the near-infrared spectrum are available for optical plastics. Typically, refractive index measurements are made by fabricating a prism of candidate optical material and using appropriate metrology equipment. Few plastics are available in thicknesses adequate to fabricate appropriate size prisms; however, almost all optical plastics can be acquired in a flat plate form. The investigation considered two fundamental approaches to measure the refractive index by (i) rotating a flat plate and measure the beam displacement and (ii) measuring the optical focal shift. The rotation method was determined not accurate enough. An optical focal shift method optical mechanical (n toptical / tmechanical ) = was developed that utilized existing laboratory equipment. The shift of focus when the plastic plate sample was inserted was located by determining the position of maximum contrast of the projection of a Ronchi ruling target when illuminated by flux from a Cary Eclipse covering the spectral range of 550–975 nm. The instrumentation, data processing, and measurement performance are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信