Carsten Mahler, Markus Glaser, Simon Schoch, S. Marx, Stefan Schluenss, Tobias Winter, Julian Popp, Sebastian Imle
{"title":"全电动生产系统的安全性能","authors":"Carsten Mahler, Markus Glaser, Simon Schoch, S. Marx, Stefan Schluenss, Tobias Winter, Julian Popp, Sebastian Imle","doi":"10.4043/29472-MS","DOIUrl":null,"url":null,"abstract":"\n The all-electric control system, as proposed with this paper, provides improved HSE, reduced costs, and increases safety and reliability compared to an electrohydraulic system. This paper describes the approach for the development of a novel all-electric safety actuation system. Key to this concept is the centralized battery, which is utilized to provide the system with the required amount of energy during valve actuation for normal operation and in case of a power cut or communication loss. Since instantaneous power for valve operation is supplied by the battery, continuous power demand remains at a similar level for current electrohydraulic solutions.\n This paper includes a detailed analysis to evaluate the safety and reliability capability of the proposed all-electric system. It also covers root causes for failure modes and suitable mitigations to prevent occurrence or for failure impact reduction. Further objective is the analysis of common cause failures, which are critical for safety function execution. The paper is a result of the work of a joint industry project.","PeriodicalId":10968,"journal":{"name":"Day 3 Wed, May 08, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Safety Capability of an All-Electric Production System\",\"authors\":\"Carsten Mahler, Markus Glaser, Simon Schoch, S. Marx, Stefan Schluenss, Tobias Winter, Julian Popp, Sebastian Imle\",\"doi\":\"10.4043/29472-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The all-electric control system, as proposed with this paper, provides improved HSE, reduced costs, and increases safety and reliability compared to an electrohydraulic system. This paper describes the approach for the development of a novel all-electric safety actuation system. Key to this concept is the centralized battery, which is utilized to provide the system with the required amount of energy during valve actuation for normal operation and in case of a power cut or communication loss. Since instantaneous power for valve operation is supplied by the battery, continuous power demand remains at a similar level for current electrohydraulic solutions.\\n This paper includes a detailed analysis to evaluate the safety and reliability capability of the proposed all-electric system. It also covers root causes for failure modes and suitable mitigations to prevent occurrence or for failure impact reduction. Further objective is the analysis of common cause failures, which are critical for safety function execution. The paper is a result of the work of a joint industry project.\",\"PeriodicalId\":10968,\"journal\":{\"name\":\"Day 3 Wed, May 08, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, May 08, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29472-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29472-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safety Capability of an All-Electric Production System
The all-electric control system, as proposed with this paper, provides improved HSE, reduced costs, and increases safety and reliability compared to an electrohydraulic system. This paper describes the approach for the development of a novel all-electric safety actuation system. Key to this concept is the centralized battery, which is utilized to provide the system with the required amount of energy during valve actuation for normal operation and in case of a power cut or communication loss. Since instantaneous power for valve operation is supplied by the battery, continuous power demand remains at a similar level for current electrohydraulic solutions.
This paper includes a detailed analysis to evaluate the safety and reliability capability of the proposed all-electric system. It also covers root causes for failure modes and suitable mitigations to prevent occurrence or for failure impact reduction. Further objective is the analysis of common cause failures, which are critical for safety function execution. The paper is a result of the work of a joint industry project.