自动文本输入生成移动测试

Peng Liu, X. Zhang, Marco Pistoia, Yunhui Zheng, M. Marques, Lingfei Zeng
{"title":"自动文本输入生成移动测试","authors":"Peng Liu, X. Zhang, Marco Pistoia, Yunhui Zheng, M. Marques, Lingfei Zeng","doi":"10.1109/ICSE.2017.65","DOIUrl":null,"url":null,"abstract":"Many designs have been proposed to improve the automated mobile testing. Despite these improvements, providing appropriate text inputs remains a prominent obstacle, which hinders the large-scale adoption of automated testing approaches. The key challenge is how to automatically produce the most relevant text in a use case context. For example, a valid website address should be entered in the address bar of a mobile browser app to continue the testing of the app, a singer's name should be entered in the search bar of a music recommendation app. Without the proper text inputs, the testing would get stuck. We propose a novel deep learning based approach to address the challenge, which reduces the problem to a minimization problem. Another challenge is how to make the approach generally applicable to both the trained apps and the untrained apps. We leverage the Word2Vec model to address the challenge. We have built our approaches as a tool and evaluated it with 50 iOS mobile apps including Firefox and Wikipedia. The results show that our approach significantly outperforms existing automatic text input generation methods.","PeriodicalId":6505,"journal":{"name":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","volume":"15 1","pages":"643-653"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Automatic Text Input Generation for Mobile Testing\",\"authors\":\"Peng Liu, X. Zhang, Marco Pistoia, Yunhui Zheng, M. Marques, Lingfei Zeng\",\"doi\":\"10.1109/ICSE.2017.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many designs have been proposed to improve the automated mobile testing. Despite these improvements, providing appropriate text inputs remains a prominent obstacle, which hinders the large-scale adoption of automated testing approaches. The key challenge is how to automatically produce the most relevant text in a use case context. For example, a valid website address should be entered in the address bar of a mobile browser app to continue the testing of the app, a singer's name should be entered in the search bar of a music recommendation app. Without the proper text inputs, the testing would get stuck. We propose a novel deep learning based approach to address the challenge, which reduces the problem to a minimization problem. Another challenge is how to make the approach generally applicable to both the trained apps and the untrained apps. We leverage the Word2Vec model to address the challenge. We have built our approaches as a tool and evaluated it with 50 iOS mobile apps including Firefox and Wikipedia. The results show that our approach significantly outperforms existing automatic text input generation methods.\",\"PeriodicalId\":6505,\"journal\":{\"name\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"volume\":\"15 1\",\"pages\":\"643-653\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2017.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2017.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

人们提出了许多改进自动移动测试的设计。尽管有这些改进,提供适当的文本输入仍然是一个突出的障碍,它阻碍了自动化测试方法的大规模采用。关键的挑战是如何在用例上下文中自动生成最相关的文本。例如,在移动浏览器应用的地址栏中输入有效的网站地址,继续进行应用的测试;在音乐推荐应用的搜索栏中输入歌手的名字。如果没有适当的文本输入,测试就会卡住。我们提出了一种新的基于深度学习的方法来解决这一挑战,该方法将问题简化为最小化问题。另一个挑战是如何使这种方法普遍适用于经过训练的应用程序和未经训练的应用程序。我们利用Word2Vec模型来应对这一挑战。我们将自己的方法作为一种工具,并通过50款iOS手机应用(包括Firefox和Wikipedia)对其进行了评估。结果表明,我们的方法明显优于现有的自动文本输入生成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Text Input Generation for Mobile Testing
Many designs have been proposed to improve the automated mobile testing. Despite these improvements, providing appropriate text inputs remains a prominent obstacle, which hinders the large-scale adoption of automated testing approaches. The key challenge is how to automatically produce the most relevant text in a use case context. For example, a valid website address should be entered in the address bar of a mobile browser app to continue the testing of the app, a singer's name should be entered in the search bar of a music recommendation app. Without the proper text inputs, the testing would get stuck. We propose a novel deep learning based approach to address the challenge, which reduces the problem to a minimization problem. Another challenge is how to make the approach generally applicable to both the trained apps and the untrained apps. We leverage the Word2Vec model to address the challenge. We have built our approaches as a tool and evaluated it with 50 iOS mobile apps including Firefox and Wikipedia. The results show that our approach significantly outperforms existing automatic text input generation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信