Haiyin Guo, Yuqin Ma, Wei Xu, Yatao Zhao, Zedu Yang, Yi Xu, Fei Li, Yatao Li
{"title":"叶尖迷宫密封泄漏率预测及结构参数优化","authors":"Haiyin Guo, Yuqin Ma, Wei Xu, Yatao Zhao, Zedu Yang, Yi Xu, Fei Li, Yatao Li","doi":"10.12982/cmjs.2023.002","DOIUrl":null,"url":null,"abstract":"To study the influence of the structural parameters of blade tip labyrinth seal (BTLS) on leakage flow characteristics, finite element method was used to calculate the relationship between blade tip leakage rate (BTLR) and four structural parameters such as tooth width, tooth height, tooth pitch and tooth number. With the finite element results as samples, support vector regression (SVR), back propagation (BP) neural network and extreme learning machine (ELM) were used to establish the prediction model of the relationship between BTLR and four structural parameters. The accuracy and applicability of three prediction models were compared and analyzed. The results showed that SVR algorithm has higher prediction accuracy and stability compared with other algorithms for the prediction of BTLR. The mean square error and determination coefficient of its test set are 0.00059637 and 0.99253 respectively. After that, SVR results were taken as samples of genetic algorithm to find the combination of structural parameters with the minimum BTLR. The obtained structural parameters were combined for simulation modeling calculation. Its results showed that the fluid velocity in the blade tip region is significantly reduced and the velocity transition is gentle. The difference between simulation and optimization was 0.01%. This method innovatively applies machine learning algorithm to the prediction of BTLR, and improves the problem of low speed and high cost when only using finite element method. It provides a new way to calculate BTLR. In addition, the structural parameters of BTLS are optimized to reduce BTLR. This idea expands the field of application of machine learning algorithms.","PeriodicalId":9884,"journal":{"name":"Chiang Mai Journal of Science","volume":"16 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Leakage Rate and Optimization of Structural Parameter of Blade Tip Labyrinth Seal\",\"authors\":\"Haiyin Guo, Yuqin Ma, Wei Xu, Yatao Zhao, Zedu Yang, Yi Xu, Fei Li, Yatao Li\",\"doi\":\"10.12982/cmjs.2023.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To study the influence of the structural parameters of blade tip labyrinth seal (BTLS) on leakage flow characteristics, finite element method was used to calculate the relationship between blade tip leakage rate (BTLR) and four structural parameters such as tooth width, tooth height, tooth pitch and tooth number. With the finite element results as samples, support vector regression (SVR), back propagation (BP) neural network and extreme learning machine (ELM) were used to establish the prediction model of the relationship between BTLR and four structural parameters. The accuracy and applicability of three prediction models were compared and analyzed. The results showed that SVR algorithm has higher prediction accuracy and stability compared with other algorithms for the prediction of BTLR. The mean square error and determination coefficient of its test set are 0.00059637 and 0.99253 respectively. After that, SVR results were taken as samples of genetic algorithm to find the combination of structural parameters with the minimum BTLR. The obtained structural parameters were combined for simulation modeling calculation. Its results showed that the fluid velocity in the blade tip region is significantly reduced and the velocity transition is gentle. The difference between simulation and optimization was 0.01%. This method innovatively applies machine learning algorithm to the prediction of BTLR, and improves the problem of low speed and high cost when only using finite element method. It provides a new way to calculate BTLR. In addition, the structural parameters of BTLS are optimized to reduce BTLR. This idea expands the field of application of machine learning algorithms.\",\"PeriodicalId\":9884,\"journal\":{\"name\":\"Chiang Mai Journal of Science\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chiang Mai Journal of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.12982/cmjs.2023.002\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chiang Mai Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.12982/cmjs.2023.002","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Prediction of Leakage Rate and Optimization of Structural Parameter of Blade Tip Labyrinth Seal
To study the influence of the structural parameters of blade tip labyrinth seal (BTLS) on leakage flow characteristics, finite element method was used to calculate the relationship between blade tip leakage rate (BTLR) and four structural parameters such as tooth width, tooth height, tooth pitch and tooth number. With the finite element results as samples, support vector regression (SVR), back propagation (BP) neural network and extreme learning machine (ELM) were used to establish the prediction model of the relationship between BTLR and four structural parameters. The accuracy and applicability of three prediction models were compared and analyzed. The results showed that SVR algorithm has higher prediction accuracy and stability compared with other algorithms for the prediction of BTLR. The mean square error and determination coefficient of its test set are 0.00059637 and 0.99253 respectively. After that, SVR results were taken as samples of genetic algorithm to find the combination of structural parameters with the minimum BTLR. The obtained structural parameters were combined for simulation modeling calculation. Its results showed that the fluid velocity in the blade tip region is significantly reduced and the velocity transition is gentle. The difference between simulation and optimization was 0.01%. This method innovatively applies machine learning algorithm to the prediction of BTLR, and improves the problem of low speed and high cost when only using finite element method. It provides a new way to calculate BTLR. In addition, the structural parameters of BTLS are optimized to reduce BTLR. This idea expands the field of application of machine learning algorithms.
期刊介绍:
The Chiang Mai Journal of Science is an international English language peer-reviewed journal which is published in open access electronic format 6 times a year in January, March, May, July, September and November by the Faculty of Science, Chiang Mai University. Manuscripts in most areas of science are welcomed except in areas such as agriculture, engineering and medical science which are outside the scope of the Journal. Currently, we focus on manuscripts in biology, chemistry, physics, materials science and environmental science. Papers in mathematics statistics and computer science are also included but should be of an applied nature rather than purely theoretical. Manuscripts describing experiments on humans or animals are required to provide proof that all experiments have been carried out according to the ethical regulations of the respective institutional and/or governmental authorities and this should be clearly stated in the manuscript itself. The Editor reserves the right to reject manuscripts that fail to do so.