基于信号伪影的鲁棒动脉血压发作检测方法

Seung-Bo Lee, Eun-Suk Song, Hakseung Kim, Dong-Joo Kim
{"title":"基于信号伪影的鲁棒动脉血压发作检测方法","authors":"Seung-Bo Lee, Eun-Suk Song, Hakseung Kim, Dong-Joo Kim","doi":"10.1109/IWW-BCI.2018.8311518","DOIUrl":null,"url":null,"abstract":"Arterial blood pressure (ABP) is used in various areas such as brain computer interface and clinical field. The morphological analysis of the ABP signal allows researchers to identify important information such as cardiovascular system and psychopathology. Detection of onset, which is the most important landmark in the ABP waveform, is essential for morphology analysis of ABP. Since the physiological signal is vulnerable to the risk of contamination, the robust onset detection method is needed. This study proposed a pulse onset detection method based on Monte Carlo approach that is robust from artifacts. The 10 cases of ABP signals were analyzed to detect signal onset. When we assessed the time difference from the actual onset, there was an average error of 2.4μs. The results suggested that the proposed method could achieve robustness in pulse detection and facilitated pulse wave analysis using clinical recordings with various artifacts.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"2 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust arterial blood pressure onset detection method from signal artifacts\",\"authors\":\"Seung-Bo Lee, Eun-Suk Song, Hakseung Kim, Dong-Joo Kim\",\"doi\":\"10.1109/IWW-BCI.2018.8311518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arterial blood pressure (ABP) is used in various areas such as brain computer interface and clinical field. The morphological analysis of the ABP signal allows researchers to identify important information such as cardiovascular system and psychopathology. Detection of onset, which is the most important landmark in the ABP waveform, is essential for morphology analysis of ABP. Since the physiological signal is vulnerable to the risk of contamination, the robust onset detection method is needed. This study proposed a pulse onset detection method based on Monte Carlo approach that is robust from artifacts. The 10 cases of ABP signals were analyzed to detect signal onset. When we assessed the time difference from the actual onset, there was an average error of 2.4μs. The results suggested that the proposed method could achieve robustness in pulse detection and facilitated pulse wave analysis using clinical recordings with various artifacts.\",\"PeriodicalId\":6537,\"journal\":{\"name\":\"2018 6th International Conference on Brain-Computer Interface (BCI)\",\"volume\":\"2 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2018.8311518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

动脉血压(ABP)被广泛应用于脑机接口和临床等领域。ABP信号的形态学分析使研究人员能够识别心血管系统和精神病理等重要信息。起始点检测是ABP波形中最重要的标志,对ABP形态学分析至关重要,由于生理信号容易受到污染,因此需要鲁棒的起始点检测方法。本文提出了一种基于蒙特卡罗方法的脉冲起始检测方法,该方法对伪影具有鲁棒性。对10例ABP信号进行分析,检测信号的发生。当我们评估与实际发生时间的时间差时,平均误差为2.4μs。结果表明,所提出的方法可以实现稳健性的脉搏检测,并有利于脉搏波分析使用各种伪影的临床记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust arterial blood pressure onset detection method from signal artifacts
Arterial blood pressure (ABP) is used in various areas such as brain computer interface and clinical field. The morphological analysis of the ABP signal allows researchers to identify important information such as cardiovascular system and psychopathology. Detection of onset, which is the most important landmark in the ABP waveform, is essential for morphology analysis of ABP. Since the physiological signal is vulnerable to the risk of contamination, the robust onset detection method is needed. This study proposed a pulse onset detection method based on Monte Carlo approach that is robust from artifacts. The 10 cases of ABP signals were analyzed to detect signal onset. When we assessed the time difference from the actual onset, there was an average error of 2.4μs. The results suggested that the proposed method could achieve robustness in pulse detection and facilitated pulse wave analysis using clinical recordings with various artifacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信