基于特征值谱的Nakagami-m衰落检测

B. Vivekanandam
{"title":"基于特征值谱的Nakagami-m衰落检测","authors":"B. Vivekanandam","doi":"10.36548/JEI.2021.2.006","DOIUrl":null,"url":null,"abstract":"One of the most crucial roles of the cognitive radio (CR) is detection of spectrum ‘holes’. The ‘no a-priori knowledge required’ prospective of blind detection techniques has attracted the attention of researchers and industries, using simple Eigen values. Over the years, a number of study and research has been carried out to determine the impact of thermal noise in the performance of the detector. However, there has not been much work on the impact of man-made noise, which also hinders the performance of the detector. As a result, both man-made impulse noise and thermal Gaussian noise are examined in this proposed study to determine the performance of blind Eigen value-based spectrum sensing. Many studies have been conducted over long sample length by oversampling or increasing the duration of sensing. As a result, a research progress has been made on shorter sample lengths by using a novel algorithm. The proposed system utilizes three algorithms; they are contra-harmonic-mean minimum Eigen value, contra-harmonic mean Maximum Eigen value and maximum Eigenvalue harmonic mean. For smaller sample lengths, there is a substantial rise in the number of cooperative secondary users, as well as a low signal-to-noise ratio when employing the maximum Eigen value Harmonic mean. The experimental analysis of the proposed work with respect to impulse noise and Gaussian signal using Nakagami-m fading channel is observed and the results identified are tabulated.","PeriodicalId":11075,"journal":{"name":"Day 1 Mon, June 28, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nakagami-m Fading Detection with Eigen Value Spectrum Algorithms\",\"authors\":\"B. Vivekanandam\",\"doi\":\"10.36548/JEI.2021.2.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most crucial roles of the cognitive radio (CR) is detection of spectrum ‘holes’. The ‘no a-priori knowledge required’ prospective of blind detection techniques has attracted the attention of researchers and industries, using simple Eigen values. Over the years, a number of study and research has been carried out to determine the impact of thermal noise in the performance of the detector. However, there has not been much work on the impact of man-made noise, which also hinders the performance of the detector. As a result, both man-made impulse noise and thermal Gaussian noise are examined in this proposed study to determine the performance of blind Eigen value-based spectrum sensing. Many studies have been conducted over long sample length by oversampling or increasing the duration of sensing. As a result, a research progress has been made on shorter sample lengths by using a novel algorithm. The proposed system utilizes three algorithms; they are contra-harmonic-mean minimum Eigen value, contra-harmonic mean Maximum Eigen value and maximum Eigenvalue harmonic mean. For smaller sample lengths, there is a substantial rise in the number of cooperative secondary users, as well as a low signal-to-noise ratio when employing the maximum Eigen value Harmonic mean. The experimental analysis of the proposed work with respect to impulse noise and Gaussian signal using Nakagami-m fading channel is observed and the results identified are tabulated.\",\"PeriodicalId\":11075,\"journal\":{\"name\":\"Day 1 Mon, June 28, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, June 28, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/JEI.2021.2.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, June 28, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/JEI.2021.2.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

认知无线电(CR)最重要的作用之一是探测频谱“空穴”。使用简单特征值的盲检测技术“不需要先验知识”的前景吸引了研究人员和工业界的注意。多年来,为了确定热噪声对探测器性能的影响,人们进行了大量的研究和研究。然而,关于人造噪声的影响还没有太多的研究,这也阻碍了探测器的性能。因此,本文研究了人为脉冲噪声和热高斯噪声,以确定基于盲特征值的频谱传感的性能。许多研究通过过采样或增加传感持续时间来进行长样本长度的研究。因此,利用一种新的算法对更短样本长度的研究取得了进展。该系统采用三种算法;它们是反调和均值最小特征值、反调和均值最大特征值和调和均值最大特征值。对于较小的样本长度,采用最大特征值调和均值时,合作二次用户数量大幅增加,信噪比较低。利用Nakagami-m衰落信道对脉冲噪声和高斯信号进行了实验分析,并将结果制成表格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nakagami-m Fading Detection with Eigen Value Spectrum Algorithms
One of the most crucial roles of the cognitive radio (CR) is detection of spectrum ‘holes’. The ‘no a-priori knowledge required’ prospective of blind detection techniques has attracted the attention of researchers and industries, using simple Eigen values. Over the years, a number of study and research has been carried out to determine the impact of thermal noise in the performance of the detector. However, there has not been much work on the impact of man-made noise, which also hinders the performance of the detector. As a result, both man-made impulse noise and thermal Gaussian noise are examined in this proposed study to determine the performance of blind Eigen value-based spectrum sensing. Many studies have been conducted over long sample length by oversampling or increasing the duration of sensing. As a result, a research progress has been made on shorter sample lengths by using a novel algorithm. The proposed system utilizes three algorithms; they are contra-harmonic-mean minimum Eigen value, contra-harmonic mean Maximum Eigen value and maximum Eigenvalue harmonic mean. For smaller sample lengths, there is a substantial rise in the number of cooperative secondary users, as well as a low signal-to-noise ratio when employing the maximum Eigen value Harmonic mean. The experimental analysis of the proposed work with respect to impulse noise and Gaussian signal using Nakagami-m fading channel is observed and the results identified are tabulated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信