{"title":"由t2不变前辛形式的核所定义的叶的紧致叶","authors":"A. Hagiwara","doi":"10.5036/mjiu.54.1","DOIUrl":null,"url":null,"abstract":"We investigate the foliation defined by the kernel of an exact presymplectic form dα of rank 2 n on a (2 n + r )-dimensional closed manifold M . For r = 2, we prove that the foliation has at least two leaves which are homeomorphic to a 2-dimensional torus, if M admits a locally free T 2 -action which preserves dα and satisfies that the function α ( Z 2 ) is constant, where Z 1 , Z 2 are the infinitesimal generators of the T 2 -action. We also give its generalization for r ≥ 1.","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact leaves of the foliation defined by the kernel of a T2-invariant presymplectic form\",\"authors\":\"A. Hagiwara\",\"doi\":\"10.5036/mjiu.54.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the foliation defined by the kernel of an exact presymplectic form dα of rank 2 n on a (2 n + r )-dimensional closed manifold M . For r = 2, we prove that the foliation has at least two leaves which are homeomorphic to a 2-dimensional torus, if M admits a locally free T 2 -action which preserves dα and satisfies that the function α ( Z 2 ) is constant, where Z 1 , Z 2 are the infinitesimal generators of the T 2 -action. We also give its generalization for r ≥ 1.\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/mjiu.54.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/mjiu.54.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact leaves of the foliation defined by the kernel of a T2-invariant presymplectic form
We investigate the foliation defined by the kernel of an exact presymplectic form dα of rank 2 n on a (2 n + r )-dimensional closed manifold M . For r = 2, we prove that the foliation has at least two leaves which are homeomorphic to a 2-dimensional torus, if M admits a locally free T 2 -action which preserves dα and satisfies that the function α ( Z 2 ) is constant, where Z 1 , Z 2 are the infinitesimal generators of the T 2 -action. We also give its generalization for r ≥ 1.