由t2不变前辛形式的核所定义的叶的紧致叶

A. Hagiwara
{"title":"由t2不变前辛形式的核所定义的叶的紧致叶","authors":"A. Hagiwara","doi":"10.5036/mjiu.54.1","DOIUrl":null,"url":null,"abstract":"We investigate the foliation defined by the kernel of an exact presymplectic form dα of rank 2 n on a (2 n + r )-dimensional closed manifold M . For r = 2, we prove that the foliation has at least two leaves which are homeomorphic to a 2-dimensional torus, if M admits a locally free T 2 -action which preserves dα and satisfies that the function α ( Z 2 ) is constant, where Z 1 , Z 2 are the infinitesimal generators of the T 2 -action. We also give its generalization for r ≥ 1.","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact leaves of the foliation defined by the kernel of a T2-invariant presymplectic form\",\"authors\":\"A. Hagiwara\",\"doi\":\"10.5036/mjiu.54.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the foliation defined by the kernel of an exact presymplectic form dα of rank 2 n on a (2 n + r )-dimensional closed manifold M . For r = 2, we prove that the foliation has at least two leaves which are homeomorphic to a 2-dimensional torus, if M admits a locally free T 2 -action which preserves dα and satisfies that the function α ( Z 2 ) is constant, where Z 1 , Z 2 are the infinitesimal generators of the T 2 -action. We also give its generalization for r ≥ 1.\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/mjiu.54.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/mjiu.54.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了在(2n + r)维闭流形M上由2n阶的精确预辛形式dα的核所定义的叶化。当r = 2时,如果M存在一个局部自由的t2 -作用,且保留dα,且满足函数α (z2)是常数,其中z1, z2是t2 -作用的无穷小产生子,则证明叶形至少有两个叶形同胚于二维环面。我们也给出了它在r≥1时的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact leaves of the foliation defined by the kernel of a T2-invariant presymplectic form
We investigate the foliation defined by the kernel of an exact presymplectic form dα of rank 2 n on a (2 n + r )-dimensional closed manifold M . For r = 2, we prove that the foliation has at least two leaves which are homeomorphic to a 2-dimensional torus, if M admits a locally free T 2 -action which preserves dα and satisfies that the function α ( Z 2 ) is constant, where Z 1 , Z 2 are the infinitesimal generators of the T 2 -action. We also give its generalization for r ≥ 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信