基于课程学习的广义判别变换用于说话人识别

E. Marchi, Stephen Shum, Kvuveon Hwang, S. Kajarekar, Siddharth Sigtia, H. Richards, R. Haynes, Yoon Kim, J. Bridle
{"title":"基于课程学习的广义判别变换用于说话人识别","authors":"E. Marchi, Stephen Shum, Kvuveon Hwang, S. Kajarekar, Siddharth Sigtia, H. Richards, R. Haynes, Yoon Kim, J. Bridle","doi":"10.1109/ICASSP.2018.8461296","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a speaker verification system deployed on mobile devices that can be used to personalise a keyword spotter. We describe a baseline DNN system that maps an utterance to a speaker embedding, which is used to measure speaker differences via cosine similarity. We then introduce an architectural modification which uses an LSTM system where the parameters are optimised via a curriculum learning procedure to reduce the detection error and improve its generalisability across various conditions. Experiments on our internal datasets show that the proposed approach outperforms the DNN baseline system and yields a relative EER reduction of 30-70% on both text-dependent and text-independent tasks under a variety of acoustic conditions.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"7 1","pages":"5324-5328"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Generalised Discriminative Transform via Curriculum Learning for Speaker Recognition\",\"authors\":\"E. Marchi, Stephen Shum, Kvuveon Hwang, S. Kajarekar, Siddharth Sigtia, H. Richards, R. Haynes, Yoon Kim, J. Bridle\",\"doi\":\"10.1109/ICASSP.2018.8461296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a speaker verification system deployed on mobile devices that can be used to personalise a keyword spotter. We describe a baseline DNN system that maps an utterance to a speaker embedding, which is used to measure speaker differences via cosine similarity. We then introduce an architectural modification which uses an LSTM system where the parameters are optimised via a curriculum learning procedure to reduce the detection error and improve its generalisability across various conditions. Experiments on our internal datasets show that the proposed approach outperforms the DNN baseline system and yields a relative EER reduction of 30-70% on both text-dependent and text-independent tasks under a variety of acoustic conditions.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"7 1\",\"pages\":\"5324-5328\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8461296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在本文中,我们介绍了一个部署在移动设备上的说话人验证系统,该系统可用于个性化关键字定位器。我们描述了一个基线DNN系统,该系统将话语映射到说话人嵌入,该嵌入用于通过余弦相似性测量说话人的差异。然后,我们引入了一个使用LSTM系统的架构修改,其中参数通过课程学习过程进行优化,以减少检测误差并提高其在各种条件下的通用性。在我们内部数据集上的实验表明,所提出的方法优于DNN基线系统,在各种声学条件下,文本依赖和文本独立任务的相对EER降低了30-70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalised Discriminative Transform via Curriculum Learning for Speaker Recognition
In this paper we introduce a speaker verification system deployed on mobile devices that can be used to personalise a keyword spotter. We describe a baseline DNN system that maps an utterance to a speaker embedding, which is used to measure speaker differences via cosine similarity. We then introduce an architectural modification which uses an LSTM system where the parameters are optimised via a curriculum learning procedure to reduce the detection error and improve its generalisability across various conditions. Experiments on our internal datasets show that the proposed approach outperforms the DNN baseline system and yields a relative EER reduction of 30-70% on both text-dependent and text-independent tasks under a variety of acoustic conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信