一维数据源的自适应似然码本重排序矢量量化

Chu Meh Chu, Nathan V. Parrish, David V. Anderson
{"title":"一维数据源的自适应似然码本重排序矢量量化","authors":"Chu Meh Chu, Nathan V. Parrish, David V. Anderson","doi":"10.1109/DSP-SPE.2015.7369536","DOIUrl":null,"url":null,"abstract":"This paper outlines an adaptive extension of likelihood codebook reordering (LCR) vector quantization. By providing a method for allowing the vector quantization to adapt in a predetermined way, the codebook may be adaptively reordered to allow more efficient encoding by giving preference to encountered vectors in the dictionary. In particular, adaptation allows the trained dictionaries to be more efficient in representing specific data. The difference in the training and testing sets produces different transition matrices which are used to encode testing vectors. The adaptive likelihood codebook reordering vector quantization adapts the a priori transition matrix obtained from training data set to the testing data set on an online instantaneous basis. This method yields improvements in coding rate when entropy coding is applied to the reordered indices obtained from the adaptive version of the LCR algorithm.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"10 1","pages":"107-112"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive likelihood codebook reordering vector quantization for 1-D data sources\",\"authors\":\"Chu Meh Chu, Nathan V. Parrish, David V. Anderson\",\"doi\":\"10.1109/DSP-SPE.2015.7369536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper outlines an adaptive extension of likelihood codebook reordering (LCR) vector quantization. By providing a method for allowing the vector quantization to adapt in a predetermined way, the codebook may be adaptively reordered to allow more efficient encoding by giving preference to encountered vectors in the dictionary. In particular, adaptation allows the trained dictionaries to be more efficient in representing specific data. The difference in the training and testing sets produces different transition matrices which are used to encode testing vectors. The adaptive likelihood codebook reordering vector quantization adapts the a priori transition matrix obtained from training data set to the testing data set on an online instantaneous basis. This method yields improvements in coding rate when entropy coding is applied to the reordered indices obtained from the adaptive version of the LCR algorithm.\",\"PeriodicalId\":91992,\"journal\":{\"name\":\"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)\",\"volume\":\"10 1\",\"pages\":\"107-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSP-SPE.2015.7369536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP-SPE.2015.7369536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种自适应扩展的似然码本重排序矢量量化方法。通过提供一种允许矢量量化以预先确定的方式进行调整的方法,码本可以自适应地重新排序,以便通过优先考虑字典中遇到的矢量来实现更有效的编码。特别是,自适应允许经过训练的字典在表示特定数据时更有效。训练集和测试集的差异产生了不同的转换矩阵,用于编码测试向量。自适应似然码本重排序矢量量化将训练数据集获得的先验转移矩阵在线瞬时地适应于测试数据集。该方法对自适应LCR算法得到的重排序索引进行熵编码,提高了编码率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive likelihood codebook reordering vector quantization for 1-D data sources
This paper outlines an adaptive extension of likelihood codebook reordering (LCR) vector quantization. By providing a method for allowing the vector quantization to adapt in a predetermined way, the codebook may be adaptively reordered to allow more efficient encoding by giving preference to encountered vectors in the dictionary. In particular, adaptation allows the trained dictionaries to be more efficient in representing specific data. The difference in the training and testing sets produces different transition matrices which are used to encode testing vectors. The adaptive likelihood codebook reordering vector quantization adapts the a priori transition matrix obtained from training data set to the testing data set on an online instantaneous basis. This method yields improvements in coding rate when entropy coding is applied to the reordered indices obtained from the adaptive version of the LCR algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信